РЕАКТОР НА МЕДЛЕННОЙ ВОЛНЕ ЯДЕРНОГО ДЕЛЕНИЯ

Павлович В. Н., Хотяинцева Е. Н. (Ин-т ядерных исследований НАН Украины), В. Д. Русов (Одесский нац. политехн. ун-т, Одесса), В. Н. Хотяинцев, А.С.Юрченко (Киевский нац. ун-т им. Тараса Шевченко)

Инновационные проекты ядерных реакторов, которые рассматриваются в последние годы международным сообществом, направлены как на повышение безопасности, так и усовершенствование топливного цикла – возможность сжигания трансурановых элементов и использования огромных запасов ²³⁸U и ²³²Th. С нашей точки зрения, реактор [1], который основан на возникновении волны медленного ядерного горения в среде чистого ²³⁸U, решает обе задачи – ядерная безопасность и использование ²³⁸U, но в том случае, если его удастся реализовать. В работе [1] показано, что в среде ²³⁸U при определенных условиях возможно распространение нейтронно–делительной волны. Действительно, если полупространство, заполненное веществом с ураном, облучать нейтронами, вблизи поверхности будет накапливаться плутоний. Со временем его концентрация может достичь критической, и тогда система может стать способной к саморазмножению. Нейтроны, вылетающие из зоны реакции, захватываются последующими слоями урана. В них также накапливается плутоний. При определенных условиях активная зона перемещается, и плутоний накапливается в следующих слоях. В результате возникает стационарная волна, во фронте которой уран перерабатывается в плутоний за счет нейтронов деления.

В работах [2, 3] говорилось о том, что реализация такого режима в реакторе обеспечит его внутреннюю безопасность. В работе [4] представлена концепция быстрого реактора, работающего в саморегулируемом режиме на глубине 100 м под землей в течение 30 лет без непосредственного участия человека. Эксплуатация такого реактора безопасна.

В работах [5, 6] предложены новые модели, направленные на разработку перспективного быстрого реактора. С помощью математического моделирования показано, что период реактора, работающего в саморегулируемом режиме, достигает 11 сут, в то время как в обычных реакторах нескольких минут (период реактора – это время, за которое

мощность возрастает в *e* раз). В работе [3] предложена модель реактора на металлическом топливе и показано, что при отсутствии управления мощность реактора за 2 года изменяется на 2,5%. Хотя авторы работ [3, 5, 6] ссылаются на работу [1], но в них автоволна делений плутония не образуется и рассмотренные реакторы не являются стационарными, так как их мощность без регулирования изменяется со временем. Возможно, это связано с геометрическими эффектами или выбором начальных условий. В то же время режим автоволны является наиболее интересным, поэтому следует проанализировать условия его возникновения сначала на основе упрощенных уравнений, затем перейти к более реальным математическим моделям.

Одна из таких упрощенных моделей рассматривается в работах [7-9]. В отличие от [1], где анализируется система четырех уравнений для концентраций нейтронов (в односкоростном приближении), урана-238, плутония-239 и урана-239, в этих работах рассматривается только одно уравнение для плотности потока нейтронов, а изменение концентрации нуклидов в волне учитывается модельной квадратичной зависимостью коэффициента размножения от флюэнса нейтронов. Такое приближение можно оправдать, если разложить зависимость концентрации плутония от волновой переменной (см.ниже) в ряд вблизи максимума и ограничиться квадратичными членами. В результате решение полученного уравнения имеет хорошо известный вид диффузионного солитона $\phi(\xi) = \phi_m \sec h^2(\alpha\xi)$. В работах [7,8] исследуется влияние на решение мощностных обратных связей, отклонений от параболичности, способов инициации волны, а в работе [9] рассматривается влияние поперечных утечек (весь анализ в [7-9] проводится в одномерном случае).

Система четырех уравнений [1] значительно сложнее для аналитического исследования, не говоря о полной математической модели процесса с учетом зависимости потока нейтронов от энергии, запаздывающих нейтронов, продуктов деления, возможных температурных обратных связей и т.д. Однако модель [1] также позволяет несколько продвинуться в аналитическом исследовании процесса. По нашему мнению, очень важным

является доказательство самого существования автоволнового режима, причем с использованием как можно более полных математических моделей. При этом речь пока не идет о конструктивном воплощении данного режима и, естественно, очень важные для быстрых реакторов технические детали вообще не обсуждаются. Хотя уже существуют работы [10-12] в которых рассчитывается данный режим в реальных реакторах.

В настоящей работе изучаются свойства стационарной волны нейтронного деления в зависимости от параметров системы. Так же, как и в работе [1], задача решается в одногрупповом диффузионном приближении. Модель частично изменена: не предполагалось, как в работе [1], что 240 Pu, порождаемый вследствие захвата нейтронов 239 Pu, эквивалентен исходному 238 U. Кроме того, сечения захвата для 238 U, 239 U, 239 Pu не считались одинаковыми.

Автоволна делений. Рассмотрим полубесконечный цилиндр из урана, который с торца облучается нейтронами. ²³⁸U может поглотить нейтрон и превратиться в ²³⁹U. Из ²³⁹U вследствие двух β -распадов образуется ²³⁹Pu (²³⁹U \rightarrow ²³⁹Np \rightarrow ²³⁹Pu) с характерным временем τ_{β} =3,47 сут. Промежуточные нуклиды ²³⁹U \rightarrow ²³⁹Np можно заменить одним «эффективным» нуклидом с временем жизни τ_{β} и концентрацией N_9 , так как время жизни ²³⁹U намного меньше времени жизни ²³⁹Np.

Плутоний делится нейтронами, выделяя нейтроны деления. Если локально концентрация плутония достигает критической, то внешний источник можно исключить, а профиль пространственного распределения нейтронной плотности постепенно стабилизируется. Теперь уже соседние слои ²³⁸U поглощают нейтроны, и плутоний образуется в соседней области. Таким образом, центр энерговыделения смещается, и в среде образуется стационарная волна нейтронного деления. Впереди такой волны из активных компонентов есть только ²³⁸U в начальной концентрации, за волной – остаточная концентрация ²³⁸U, ²³⁹Pu и продуктов деления.

Система уравнений, описывающих этот процесс, состоит из уравнения диффузии в одногрупповом приближении, которое описывает процесс распространения и захвата

нейтронов с учетом их генерации при делении плутония. В одномерном случае оно имеет вид:

$$\frac{\partial n}{\partial t} = D v_n \frac{\partial^2 n}{\partial z^2} + n v_n (v \sigma_f^{Pu} N_{Pu} - \sum_i \sigma_a^i N_i), \qquad (1)$$

а также кинетических уравнений для концентраций основных нуклидов, принимающих участие в процессе:

$$\frac{\partial N_8}{\partial t} = -nv_n \sigma_a^{\ 8} N_8;$$

$$\frac{\partial N_9}{\partial t} = nv_n (\sigma_a^{\ 8} N_8 - \sigma_a^{\ 9} N_9) - N_9 / \tau_\beta;$$

$$\frac{\partial N_{Pu}}{\partial t} = -nv_n \sigma_a^{\ Pu} N_{Pu} + N_9 / \tau_\beta.$$
(2)

Здесь N_8 , n, N_9 , N_{Pu} – концентрация ²³⁸U, нейтронов, «эффективного» нуклида и ²³⁹Pu соответственно; D – коэффициент диффузии нейтронов; v_n – скорость нейтронов в среде; v – среднее число мгновенных нейтронов; $\sigma_a^{\ i}$ – сечения поглощения веществ, суммирование по i ведется по всем компонентам среды; σ_f^{Pu} – сечение деления ²³⁹Pu. В системе уравнений не учитываются запаздывающие нейтроны ввиду разных временных масштабов, хотя не исключено, что они могут стабилизировать фронт волны. Не учитываются также продукты деления, зависимость потока нейтронов от энергии и возможные обратные связи в реакторе. Понятно, что сечения в этих уравнениях следует рассматривать как усредненные по всему спектру реактора.

Предполагаем, что существует решение системы (1), (2) в виде стационарной волны. Это значит, что неизвестная концентрация *n*, *N*₈, *N*₉ и *N*_{Pu} становится функцией одной переменной $\xi = z + Vt$, где *V* – скорость распространения волны нейтронного деления, которую необходимо найти. Чтобы записать уравнения в безразмерном виде, нужно уравнение (1) умножить на $\tau = (v_n \sum \sigma_a^i N_i)^{-1} (\tau - 3 \tau \sigma)$ время жизни нейтронов в среде), ввести безразмерную волновую переменную x = (z + Vt)/L (*L* – диффузионная длина поглощения нейтронов, $L^2 = D\tau$) и относительную концентрацию $n_i = N_i/N_8(-\infty)$, $n_{\rm kp} = N_{\rm kp}/N_8(-\infty)$; где $N_{\rm kp}$ = $(\sum \sigma_a^i N_i)/v \sigma_f^{\rm Pu}$ ($N_{\rm kp}$ – критическая концентрация плутония); $n \rightarrow n \tau_\beta v_n \sigma_a^{-8}$. После введения безразмерного параметра $W = \tau_{\beta} V/L$, который характеризует скорость волны, и учета того, что для процессов с характерным временем τ_{β} производной по времени от нейтронной плотности можно пренебречь (адиабатическое приближение), система уравнений (1), (2) приобретает такой вид:

$$\frac{d^2 n}{dx^2} = n(1 - \frac{n_{Pu}}{n_{\kappa p}});$$

$$W \frac{dn_8}{dx} = -nn_8;$$

$$W \frac{dn_9}{dx} = n(n_8 - bn_9) - n_9;$$

$$W \frac{dn_{Pu}}{dx} = -n\gamma n_{Pu} + n_9,$$

$$\gamma = \sigma_a^{Pu} / \sigma_a^{-8}.$$
(3)

где $b = \sigma_a^{9} / \sigma_a^{8}$; $\gamma = \sigma_a^{Pu} / \sigma_a^{8}$.

Система уравнений [1] имеет немного иной вид:

$$\frac{d^{2}n}{dx^{2}} = n(1 - \frac{n_{Pu}}{n_{\kappa p}});$$

$$W \frac{dn_{8}}{dx} = -n(n_{8} - n_{9} - n_{Pu});$$

$$W \frac{dn_{9}}{dx} = n(n_{8} - n_{9}) - n_{9};$$

$$W \frac{dn_{Pu}}{dx} = -n\gamma n_{Pu} + n_{9}.$$
(4)

В этих уравнениях b = 1. Из второго уравнения системы (4) следует, что ²³⁸U образуется вследствие захвата нейтронов ²³⁹Pu и ²³⁹U. Такой процесс на самом деле не происходит, и в своей задаче мы его не учитывали.

Введенные параметры *b* и *γ* выражаются через отношения сечений реакций и, на первый взгляд, должны быть фиксированы. Однако в одногрупповом приближении применяются усредненные по энергии сечения, которые можно выбрать лишь приближенно, фактически лишь по порядку величины, поскольку сечения реакций, как правило, сильно зависят от энергии нейтронов. Но спектр нейтронов в реакторе существенно определяется наличием или отсутствием замедлителя, конструкционными материалами, наличием поглотителей нейтронов и др., вследствие чего процедура усреднения сечений не

определена. Поэтому важно знать, как сильно зависят свойства волны от выбора усредненных сечений в определенном диапазоне, ведь выход за рамки одногруппового приближения сильно усложняет задачу. Следует также отметить, что параметр b определяется отношением сечений поглощения «эффективного» нуклида и ²³⁸U. Так как время жизни ²³⁹U намного меньше времени жизни ²³⁹Np, то для оценок следует использовать сечение поглощения ²³⁹Np.

Аналогичная ситуация с определением относительной критической концентрации плутония $n_{\text{кp}}$. Фактически $\sum_{i} \sigma_{a}^{i} N_{i}$ должна содержать макроскопические сечения всех веществ, которые поглощают нейтроны, в том числе и продуктов деления, т. е. величина $n_{\kappa p}$ не является константой, а изменяется в процессе прохождения волны. Но в быстрых реакторах поглощением продуктов деления плутония можно пренебречь в первом приближении, а поглощение нейтронов другими материалами можно считать постоянными. Значит, относительная критическая концентрация плутония $n_{\kappa p}$ является постоянным параметром задачи. Он определяется поглощением нейтронов в материалах, которые не принимают участия в распространении волны ядерного деления.

Решение системы (3) в виде стационарной волны должно удовлетворять таким краевым условиям:

при
$$x = \pm \infty$$
 $n = 0;$ (5)

при
$$x = -\infty$$
 $n_8 = l$, $n_9 = n_{\rm Pu} = 0$. (6)

Медленная волна. Аналитически продвинуться в решении системы (3) можно в двух предельных случаях: $\tau_{\beta}V/L \ll 1$ и $\tau_{\beta}V/L \gg 1$. Первый случай означает приближение медленной волны (скорость волны очень мала: расстояние, которое проходит волна за время τ_{β} , $\tau_{\beta}V$, значительно меньше длины диффузии нейтронов *L*), второй случай – приближение быстрой волны. Рассмотрим сначала приближение медленной волны. Для дальнейшего анализа все уравнения системы (3) поделим на $W=\tau_{\beta}V/L$, переопределив при этом

 n_9/W , в результате система упрощается:

$$\frac{d^2 n}{dx^2} = n(1 - \frac{n_{Pu}}{n_{\kappa p}});$$

$$\frac{dn_8}{dx} = -nn_8;$$

$$\frac{dn_{Pu}}{dx} = -n\gamma n_{Pu} + nn_8.$$
(7)

Систему (7) можно частично проинтегрировать аналитически, понизив порядок с 4 до

1. Введем переменную μ : $d\mu = ndx$; $\mu = \int_{-\infty}^{x} n(\zeta) d\zeta$. Тогда из уравнений (7) с учетом краевых

условий (5), (6) найдем концентрацию как функцию переменной µ:

$$n_8 = \exp(-\mu), \tag{8}$$

$$n_{P_{\mu}} = \frac{1}{\gamma - 1} [\exp(-\mu) - \exp(-\gamma\mu)],$$
 (9)

$$n^{2} = \mu^{2} - \frac{2}{n_{\kappa p}(\gamma - 1)\gamma} [\gamma \cdot \exp(-\mu) - \frac{1}{\gamma} \exp(-\gamma\mu) - \gamma + \frac{1}{\gamma} + (\gamma - 1)\mu].$$
(10)

Для решения в виде волны μ изменяется от 0 до некоторого $\mu_{\text{макс}} = \int_{-\infty}^{+\infty} n(x) dx$.

Согласно с краевыми условиями $n(+\infty) = 0$. Это равносильно тому, что $n(\mu_{\text{макс}}) = 0$. Можно показать, что граничные условия (5) выполняются, только если функция $n^2(\mu)$ при $\mu = \mu_{\text{макс}}$ имеет корень кратности два. Его можно найти из системы алгебраических уравнений:

$$n^2(\mu_{\text{Makc}}) = 0,$$
 (11)

$$[n^{2}(\mu)]'_{\mu=\mu_{MAKC}} = 0.$$
(12)

Численно решая систему (10)–(12), находим относительную критическую концентрацию плутония $n_{\kappa p}$ в приближении медленной волны для некоторых значений γ , которые представляют собой отношение сечения поглощения ²³⁹Pu к сечению поглощения ²³⁸U (табл. 1).

Для нахождения нейтронной плотности перепишем уравнение (10), учитывая связь между переменными μ и *n*:

$$\frac{d\mu}{dx} = \sqrt{f(\mu)};$$

$$f(\mu) = \mu^2 - \frac{2}{n_{\kappa p}(\gamma - 1)\gamma} [\gamma \exp(-\mu) - \frac{1}{\gamma} \exp(-\gamma \mu) - \gamma + \frac{1}{\gamma} + (\gamma - 1)\mu].$$
(13)

Найдя по уравнению (13) $\mu(x)$, получим нейтронную плотность n(x), а также, учитывая формулы (8), (9), концентрацию $n_8(x)$ и $n_{Pu}(x)$. Обыкновенное дифференциальное уравнение (13) решаем численно, начальные условия задаем произвольно, поскольку структура уравнения такова, что разные решения $\mu = \varphi(x-C)$ отличаются лишь смещением вдоль оси x. Начальные условия можем задать, например, так: μ (0) = 0,1, или μ (0) = 0,5 – в этом случае волна сместится вдоль оси x вправо, а сам вид решения не изменится. Профили медленной волны представлены на рис.1. Оказывается, что режим с меньшим отношением сечений поглощения γ и большей относительной критической концентрацией плутония n_{kp} является более выгодным с точки зрения выгорания ²³⁸U. Как видно, при втором режиме после прохождения волны остается около 35 % начального количества урана, в то время как при больших γ около 50 %. Напомним, что отношение сечений поглощения γ определяется спектром реактора.

Быстрая волна. Рассмотрим теперь приближение быстрой волны W >> 1 (τ_{β} >> L/V). Полная система уравнений (3) упрощается и частично интегрируется аналитически в случае b = 0 (отсутствие поглощения нейтронов эффективным нуклидом). Процесс прохождения волны в этом случае можно разделить на две стадии: быстрый фронт (характерное время всех процессов L/V) и медленный спад (характерное время τ_{β}). Для быстрого фронта, пренебрегая медленным β -распадом n_9 , после замены переменных получим

$$\frac{d^{2}n}{dx^{2}} = n(1 - n_{Pu});$$

$$\frac{1}{\gamma} \frac{dn_{Pu}}{dx} = -nn_{Pu} + n_{0}[1 - \exp(-\mu)];$$

$$d\mu / dx = n,$$
(14)

где $n_0 = 1/\gamma n_{\rm kp} W$; $n_{\rm Pu}$ измеряется в единицах $n_{\rm kp}$. Система (14) решалась численно. Параметр задачи n_0 определялся из условия поведения заданного решения при $x \rightarrow \infty$: $n = n_0$, $n_{\rm Pu} = n_{\rm kp}$, что есть очевидным стационарным решением системы (14) при $x \rightarrow \infty$. Стационарное решение n_0 слабо зависит от отношения сечений γ : так, для $\gamma = 5$ $n_0 = 0,9664$, для $\gamma = 10$ $n_0 =$ 0,8042. Значит, при W >> 1 скорость волны пропорциональна $n_{\rm kp}^{-1}$, а также приближенно пропорциональна γ^{-1} .

Найденные зависимости, для которых n_{Pu} выходит на n_{kp} , n_9 выходит на единицу, n -на n_0 , описывают лишь быстрый фронт волны (рис. 2). При учете конечного времени жизни n_9 эти зависимости переходят при больших значениях волновой переменной x в медленные зависимости такого вида: $n_{Pu} \rightarrow n_{kp}$, $n_9 \rightarrow \exp(-x/W)$, $n \rightarrow n_0 \exp(-x/W)$. При этом считается, что переход быстрого фронта в медленный спад происходит вблизи точки x = 0. Заметим, что в данном случае наблюдается почти полное выгорание ²³⁸U.

Для промежуточных случаев, а именно при конечных значениях $0 < W < \infty$, точная система (3) решалась численно. При каждом значении критической концентрации плутония $n_{\rm kp}$ волна нейтронного деления распространяется с определенной скоростью W, которая зависит от $n_{\rm kp}$. С уменьшением $n_{\rm kp}$ скорость волны W возрастает, выходя на линейную зависимость W от $n_{\rm kp}^{-1}$. С увеличением скорости волны увеличивается концентрация нейтронов и относительная глубина выгорания ²³⁸U.

Расчеты проводились при разных отношениях γ сечения поглощения ²³⁹Ри к сечению поглощения ²³⁸U и при разных отношениях *b* сечения поглощения «эффективного» нуклида к сечению поглощения ²³⁸U. В случае медленной волны (*W* << 1) любая зависимость от *b* отсутствует. Для промежуточной скорости с увеличением скорости волны зависимость от *b* усиливается. Так, при увеличении значения *b* от 1 до 5 критическая концентрация плутония n_{cr} уменьшается на несколько процентов для малой скорости и до 30% для большой скорости. При фиксированной скорости волны относительная глубина выгорания ²³⁸U и концентрация нейтронов изменяются приблизительно пропорционально относительной критической концентрации плутония n_{kp} .

Обсуждение результатов. Как для медленной, так и для быстрой волны с увеличением отношения сечений γ критическая концентрация плутония $n_{\rm kp}$ при заданной скорости волны W уменьшается, в первом приближении обратно пропорционально γ . При этом уменьшается концентрация нейтронов, «эффективного» нуклида и ²³⁸U.

Существенно, что при заданной скорости волны W и заданных параметрах среды критическая концентрация плутония $n_{\rm kp}$ является также строго заданной, т. е. волновой режим исчезает, если критическая концентрация изменяется. Это хорошо видно на рис. 3, где для сравнения приведено изменение концентраций при одних и тех же параметрах W, γ и *b*, но разных $n_{\rm kp}$. Незначительное отклонение $n_{\rm kp}$ от значения, которое задавалось на рис. 3,а, приводит к исчезновению волнового режима на рис. 3,б, на котором хорошо видно возрастание нейтронной плотности, что может трактоваться как разгон реактора.

Если рассматривать критическую концентрацию плутония $n_{\rm kp}$ как функцию скорости волны, то значение, которое отвечает предельному случаю медленной волны, является максимальным. При $n_{\rm kp} > n_{\rm makc}$ волна нейтронного деления не образуется вообще.

Нужно отметить, что критическая концентрация плутония является параметром среды и не может быть меньшей некоторого предельного значения. С практической точки зрения целесообразно сосредоточиться на скоростях, которым отвечают физически реальные значения *n*_{kp} (табл. 2).

Для физически реальной критической концентрации плутония волна нейтронного деления может иметь скорость в промежутке от почти нуля до приблизительно 3 см/сут. При этом относительная глубина выгорания ²³⁸U изменяется от 50 до 80 %.

Очевидно, что само существование автоволнового режима делений ядер плутония в среде ²³⁸U существенно зависит от параметров задачи, а именно от отношения между сечениями поглощения всех нуклидов, которые принимают участие в процессе, что в свою очередь определяется спектром реактора. Особенно определяющей является зависимость от критической концентрации плутония, которая определяется отношением сечения деления плутония к сечениям поглощения всех нуклидов. Отметим также, что вид зависимости

концентрации плутония от волновой переменной (Рис.1-3) позволяет разложение в ряд вблизи максимума и получение квадратичной зависимости, как в [7-9], однако асимметрия этой зависимости достаточно сильная и использование квадратичного приближения для описания волны кажется проблематичным.

Еще раз следует отметить, что анализ был выполнен на основе предположения, что критическая концентрация плутония является постоянной заданной величиной. В действительности она изменяется при прохождении волны, и возможно, что учет этого факта, а также других нуклидов, которые образуются при делении плутония и определяют его критическую концентрацию, может существенно изменить выводы. Особенно интересным может быть более детальное изучение вопроса о критериях существования автоволны в зависимости от нейтронного спектра реактора, но это требует выхода за пределы одногруппового приближения. Понятно, что все качественные выводы касаются также ториевого реактора, хотя отношения между параметрами будут отличаться.

Вопрос о стабилизации такой волны требует отдельного рассмотрения, поскольку даже простые качественные рассуждения показывают, что в некоторых условиях волна может быть нестабильной. Действительно, при облучении цилиндра с торца однородным потоком нейтронов плутоний будет распределен в приповерхностном слое однородно по радиусу. При достижении критического состояния плотность потока нейтронов, а значит, и концентрация плутония в соседнем слое будут иметь максимум в центре цилиндра и спадать к боковой поверхности из-за утечки нейтронов через боковую поверхность. При движении такой волны через цилиндр возможны две ситуации. Либо, пройдя некоторое расстояние, волна собирается в точку и исчезает, либо, если радиус цилиндра достаточно большой (во всяком случае больше $2l_a$, где l_a – длина свободного пробега нейтрона), через некоторое расстояние волна стабилизируется с почти плоским профилем концентрации плутония в центре цилиндра и резким спадом к боковой поверхности. Такие качественные рассуждения позволяют сделать некоторые выводы. Во-первых, перед проведением громоздких численных расчетов в многогрупповом приближении с учетом большого числа нуклидов в реальной геометрии необходимо изучить такую систему на устойчивость автоволнового решения. Во-вторых, устойчивость автоволны существенно зависит от геометрии и параметров задачи (отношений между сечениями). В-третьих, численные расчеты реальных систем следует проводить с максимально возможной точностью, поскольку такие расчеты требуют пересчета сечений на каждом шаге, а отношения между сечениями определяют устойчивость волны.

Исследование устойчивости системы параболических уравнений представляет собой достаточно сложную задачу, в общем виде до сих пор не решенную. Однако в некоторых частных случаях можно применить методы, развитые в теории химического горения [13]. Так, в случае равенства коэффициентов диффузии компонентов, принимающих участие в реакции (для нашего случая это равенство нулю коэффициента диффузии нейтронов) можно показать, что волновое решение является устойчивым в быстром уран-плутониевом реакторе в плоской геометрии. Более сложные случаи требуют дальнейшего исследования.

СПИСОК ЛИТЕРАТУРЫ

1. Феоктистов Л.П. Нейтронно-делительная волна. – Докл. Акад. Наук СССР, 1989, т. 309, с.864–867.

2. Феоктистов Л.П. Безопасность – ключевой момент возрождения ядерной энергетики.– Успехи физ. наук, 1993, № 8, с. 89–102.

3. **Гольдин В.Я., Трощиев Ю.В., Пестрякова Г.А**. Об управлении реактором на быстрых нейтронах в саморегулируемом режиме 2-го рода.–Докл. РАН, 1999, т. 369, № 2, с. 170–172.

4. Teller E. Nuclear energy for the third millennium.- Preprint, UCRL-JC-129547, LLNL, 1997.

5. Гольдин В.Я., Анистратов Д.Ю. Реактор на быстрых нейтронах в саморегулируемом нейтронноядерном режиме.– Мат. Моделирование, 1995, т. 7, № 10, с. 12–32.

6. Гольдин В. Я., Пестрякова Г.А. Трощиев Ю.В., Аристова Е.Н. Быстрый реактор на оксидном уран-плутониевом топливе в саморегулируемом режиме. – Атомная энергия, март 2003, т.94, вып. 3, с. 184–190.

7. H. van Dam. Self-stabilizing criticality waves. – Annals of Nuclear Energy 27, 2000, p. 1505–1521

8. H. van Dam. Flux distributions in stable criticality waves.– Annals of Nuclear Energy 30, 2003, P. 1495–1504.

9. Xue-Nong Chen, Werner Maschek. Transverse buckling effects on solitary burn-up waves.– Annals of Nuclear Energy 32, Issue 12, 2005, P. 1377-1390.

10. Sekimoto, H., et al. A new burnup strategy CANDLE.- Nucl. Sci. Eng. 139, 2001, p. 306-317.

 Sekimoto, H., Tanaka, K. Application of CANDLE Burnup Strategy to Small Reactors.–Trans. Am. Nucl. Soc. 87, 2002, P. 399-400.

12. Sekimoto, H., Ohoka, Y. Application of Candle Burnup to Block-Fuel High Temperature Gas Reactor.
– Proceeding of ICAAP'03, Cordoba, May 4-7, 2003, CD. Paper 3013.

13. Volpert A.I., Volpert Vit.A., Volpert VI.A. Traveling Wave Solutions of Parabolic Systems.– Providence. R.I., American Mathematical Society, 2001, 410 p.

Рис. 1аб

Рис. Заб

Таблица 1. Зависимость $n_{\rm kp}$ от γ в случае W << 1.

n _{кр}	γ
0,10456	5
0,09168	6
0,0740	8
0,06227	10
0,0539	12

Таблица 2. Зависимость W от $n_{\rm kp}$ для $\gamma = 10$.

W	n _{кр}
0,01	0,06208
0,02	0,06188
0,1	0,0602
0,5	0,05145
1,4	0,03655

Подписи к рисункам.

Рис. 2. Зависимость безразмерной концентрации n_i от волновой переменной x в случае W >> 1, $n_0 = 0.96648$, $n_{\text{Pu}}/n_{\text{кр}} \rightarrow 1$, $n \rightarrow n_0$: l - плутоний; 2 - нейтроны; $3 - {}^{238}$ U.

Рис. 3. Зависимость безразмерной концентрации n_i от волновой переменной x при W = 3, $\gamma = 10$, b = 1, $n_{\text{кр}} = 0.0234311$ (a); $n_{\text{кр}} = 0.02344$ (δ): 1 – нейтроны; 2 – плутоний; $3 - {}^{238}\text{U}$; 4 -«эффективный» нуклид.

Павлович В. Н., Русов В. Д., Хотяинцев В. Н., Хотяинцева Е. Н., Юрченко А. С. **Реактор на медленной волне ядерного деления.** – Атомная энергия, 2006, т. 101, вып.

На основе упрощенной системы уравнений исследованы свойства автоволны медленного ядерного горения, которая в определенных условиях может распространяться в среде, содержащей 238 U (или 232 Th). Показано, что на возникновение волны влияет спектр реактора и наличие в составе среды других веществ, которые определяют критическую концентрацию плутония (или 233 U). Рис. 3, табл. 2, список лит. 7 назв.

Pavlovich V. M., Rusov V. D., Khotyayintsev V. M., Khotyayintseva O. M., Yurchenko O. S.