Самоионизация атома при β- – распаде

А. И. Феоктистов, В. Т. Купряшкин, Л. П. Сидоренко

Институт ядерных исследований НАН Украины Киев – 22, МСП, Просп. Науки, 47

Методом (е γ) -, (е β) – совпадений измерена зависимость выхода электронов околонулевой энергии (е₀ электронов) Y₀ с поверхности источника ⁴⁶Sc от энергии β^- – частиц. Определена самоионизация атома при β^- – распаде вследствие встряски и прямых соударений. Установлено, что при большой энергии вероятность встряски не зависит от энергии β^- – частицы, в то время как при прямых соударениях она обратно пропорциональна ее скорости. Обсуждение результатов измерений проводится в приближении "внезапности" появления возмущения электронов атома зарядом пролетающей β^- – частицы.

При β⁻ – распаде из ядра вылетает электрон, и атом становится ионизированным с зарядом +1е. Кроме того, дополнительно, происходит также внутренняя ионизация электронной оболочки атома. При этом электрон покидает атом под действием двух механизмов: из – за внезапного изменения заряда ядра на +1е и благодаря взаимодействию β – частицы с электроном собственной оболочки атома. В литературе первый механизм получил название "встряски", а второй – прямые соударения [1]. Таким образом, возникающий при β⁻ – распаде заряд ионизации ΔZ, выраженный в единицах заряда электрона, можно представить как

$$\Delta Z = +(1 + \Delta Z_1 + \Delta Z_2), \tag{1}$$

где ΔZ_1 и ΔZ_2 - изменение заряда атома вследствие "встряски" и прямых соударений, соответственно.

Обычно эффект внутренней ионизации атома при β^- – распаде наблюдают косвенно, по рентгеновскому К - или L – излучению после возбуждения К - или L – оболочки. Однако вероятность такого процесса составляет $10^{-3} \div 10^{-4}$ вакансий на один распад. Гораздо большую, близкую к единице, должна составлять вероятность ионизации внешних оболочек атома. Но, из- за трудностей наблюдения электронов малой энергии, такие эксперименты не

проводились. Нами предложен метод исследования внутренней ионизации атома при β⁻ – распаде основанный на наблюдении выхода электронов околонулевой энергии.

Под электронами околонулевой энергии (е₀ - электроны) мы понимаем электроны малой энергии, которые испускаются с поверхности радиоактивных источников (или при бомбардировке мишени заряженными частицами) благодаря внезапному появлению электрического заряда вблизи поверхности – стряхивание с поверхности [2, 3]. Максимум распределения е₀ – электронов по энергии находится примерно при энергии $E_{max} \approx 0.5$ эВ, а его полуширина $\Gamma \approx 1$ эВ. Далее с ростом энергии е₀ – электронов интенсивность распределения быстро падает и при энергии приблизительно 20 эВ ею можно пренебречь. В литературе это распределение получило название "пик нулевой энергии" [4,5]. Чем ближе к поверхности возникает заряд, тем больше вероятность стряхивания е₀ – электронов и, наоборот, при удалении заряда вглубь источника стряхивание быстро уменьшается. Поэтому можно ввести такое понятие, как "приповерхностный слой", за который мы принимаем 5 атомных слоев от поверхности, после которого встряска практически исчезает.

Выход Y_0 представляет собой среднее значение числа вылетевших e_0 – электронов при равновероятном появлении заряда в различных слоях приповерхностного слоя. Выход Y_0 пропорционален квадрату заряда ионизации ΔZ , а величина последнего зависит от вида радиоактивного распада [2]. Измеряя Y_0 при β^- – распаде, мы можем судить о величине внутренней ионизации, причем благодаря квадратичной зависимости $Y_0 \sim (\Delta Z)^2$, эти измерения очень чувствительны к величине ΔZ .

В работе [2] нами была получена зависимость выхода e_0 – электронов от средней энергии β – частиц \overline{E}_{β} для различных ветвей распада ¹⁵²Eu, ¹⁵⁴Eu и ¹³¹I. При высокой энергии β – частиц, вплоть до 1500 кэВ, выход e_0 – электронов остается постоянным. Однако при энергии меньше 200 кэВ наблюдается резкое увеличение Y_0 по мере уменьшения \overline{E}_{β} . Мы считаем, что этот рост связан с увеличением вклада в ΔZ механизма прямых соударений. Теоретически механизм прямых соударений рассматривался только для К – оболочки. Было

показано, что прямые соударения играют важную роль в ионизации атома при малой энергии β – частиц, а с ростом энергии вероятность этого процесса быстро падает [6, 7].

Исследование ионизации атома в процессе β^{-} – распада было продолжено нами с источником ⁴⁶Sc [8,9]. Была сделана оценка зависимости заряда ΔZ_2 при прямых столкновениях β^{-} – частиц с электронами собственной оболочки атома. Однако принятая геометрия эксперимента не позволила наблюдать эту зависимость ниже $\overline{E}_{\beta} = 24$ кэВ. В данной работе мы продолжили исследование зависимости ионизации от средней энергии β -частиц ΔZ (\overline{E}_{β}) в ⁴⁶Sc в другой геометрии, позволяющий спуститься по энергии до $\overline{E}_{\beta} \sim 6.5$ кэВ и получить более надежные результаты.

Условие проведения эксперимента

Схема эксперимента показана на рис.1. В вакуумной камере расположены источник ⁴⁶Sc и два детектора электронов МКП₁ и МКП₂, представляющих собой две микроканальные пластины сложенные в виде шеврона для каждого детектора. Детектор МКП₁, расположенный на расстоянии 4 см от источника, предназначен для регистрации e_0 – электронов. Его поверхность была ограничена диафрагмой в виде ободка диаметром 10 мм и высотой 8 мм. Детектор МКП₂, расположенный на расстоянии 5 см от источника и предназначенный для регистрации β – частиц, имел окно 20 х 30 мм². Для обрезания β – спектров при различных энергиях перед ним ставились алюминиевые поглотители разной толщины. Снаружи камеры на расстоянии 8 см от источника располагался Ge(Li) – детектор для регистрации γ 899 и γ 1120 кэВ, находящихся в каскаде и сопровождающих β^{-} – распад ⁴⁶Sc (граничная энергия β -спектра E_{rp} = 357 кэВ). Регистрация какого либо из гамма – квантов соответствует регистрации одного акта β^{-} – распада.

Из измерений простого γ – спектра и спектра (еγ) – совпадений при напряжении на поверхности МКП₁ 120 В, а на источнике 0 и 160 В определялась вероятность регистрации е₀ – электронов R₀ по формуле

$$R_{0} = \frac{N_{1} - N_{2}}{N_{\gamma}(1 - R_{\gamma})} = \frac{N_{e_{0}\gamma}}{N_{\gamma}(1 - R_{\gamma})},$$
 (2)

где N₁ и N₂ – числа (еү) – совпадений при напряжении на источнике 0 и 160 B, N_{eo}, - число (е₀γ) – совпадений, а N_γ – число зарегистрированных γ – квантов в простом спектре за тот же промежуток времени, что и при измерении N₁ и N₂ для каждой γ – линии, R_γ = N₂/ N_γ - вероятность регистрации быстрых электронов e_f, попадающих с поверхности источника на МКП₁, включая и β – частицы. При напряжении на источнике 0 B регистрируются все электроны e₀ и e_f, а при напряжении + 160 B – только e_f - электроны. В этих измерениях определялась вероятность регистрации e₀ - электронов при регистрации одной β – частицы от всего β – спектра без ограничения по энергии, т.е. при отсутствии поглотителя. Для более полного собирания e₀ – электронов. на поверхности МКП₁ подавалось напряжение 120 B.

Далее измерялись временные спектры (е β) – совпадений и число β^- – частиц N_{β}, зарегистрированных МКП₂ за тот же интервал времени. Вероятность регистрации е₀ – электронов на одну зарегистрированную β^- – частицу для некоторой средней энергии \overline{E}_{β} определяется как

$$R_{0}(\overline{E}_{\beta}) = \frac{N_{e_{0}\beta}}{N_{\beta}}, \qquad (3)$$

где $N_{e_0\beta}$ - число ($e_0\beta$) – совпадений, определяемое аналогично числу ($e_0\gamma$) – совпадений $N_{e_s\gamma}$. На рис. 2 показан временной спектр ($e\beta$) – совпадений, измеренный при толщине поглотителя 180 мкГ/см² и напряжении на источнике 0 В. Видно, что пик, соответствующий e_0 – электронам (левый пик на рис.2), и пик быстрых e_f – электронов (правый пик), хорошо разделяются между собой. Для наглядности, на вставке показан также временной спектр ($e\beta$) – совпадений, измеренных при напряжении на источнике +160 В, где пик e_0 - электронов отсутствует. Меняя толщину поглотителей, мы изменяем среднюю энергию \overline{E}_{β} β – частиц. Для определения энергии обрезания β – спектра алюминиевыми фольгами различной толщины использовалось соотношение между пробегом и энергией электронов [10].

$$\rho l = 542 E_{\beta} \left[1 - 0.98 \left(1 + 3.14 E_{\beta} \right)^{-1} \right], \tag{4}$$

5

где ρl - толщина поглотителя в мг/см², а \overline{E}_{β} - средняя энергия β -частиц в МэВ.

В таблице 1 представлено 19 точек измерений, выполненных при различных толщинах поглотителя. Некоторые данные, приведенные в таблице, требуют дополнительного пояснения. Четыре первых поглотителя представляют собой лавсановые пленки, на которые напылен алюминий, остальные поглотители – алюминиевые фольги различной толщины выраженной в мкг/см². Энергия обрезания спектра E_{ofp} определялась из соотношения между энергией электронов и их пробегом по формуле (4).

Если мы мысленно представим β – спектр поделенный E_{obp} на две части, то левая часть будет относиться к β – частицам, поглощенным в поглотителе, а правая – к регистрируемым МКП₂. Диапазон энергии β – частиц для точек 1- 9 простирается от 0 до E_{obp} , а для точек 11 – 19 от E_{obp} до E_{rp} . Точка 10 относится к диапазону от 0 до E_{rp} . Далее рассчитывались средняя по диапазону энергия β – частиц \overline{E}_{β} и средняя скорость \overline{V}_{β} , при этом использовалось распределение β – частиц для разрешенного β^{-} – перехода. Для точек 1 – 9 при определении \overline{E}_{β} проводилось интегрирование в районе от 0 до E_{obp} , а для точек 11- 19 – от E_{obp} до E_{rp} .

Для точек 11 – 19 число зарегистрированных МКП₂ β -частиц N_{β} определялось непосредственно из измерений при различных толщинах поглотителя, а для точек 1-9 – как разность счета β – частиц для точки 10 (полное число β – частиц зарегистрированных МКП₂ за 10 с.) и одной из точек 11 – 19. Далее по формуле (3), непосредственно из измерений, определялась вероятность регистрации е₀ – электронов R₀ для точек 11 - 19, а для точек 1 – 9 – из представления, как если бы β – частицы не поглощались поглотителем, а регистрировались МКП₁.

$$R_{01} = \frac{R_{010} - m_{11}R_{011}}{m_1},$$
(5)

где R_{01} и R_{011} - вероятности регистрации электронов в соответствующих, дополняющих друг друга, интервалах энергии, получаемые при толщине поглощения 180 мкг/см², R_{010} - вероятность регистрации e_0 – электронов для всего β – спектра, а m_1 и m_{11} - доля от всего β – спектра для точек 1 и 11. Аналогичным образом рассчитываются значения R_0 для других точек от второй до девятой с помощью значений R_{010} и одного из значений в диапазоне R_{012} ÷ R_{019} .

Во всех наших предыдущих исследованиях выход Y_0 определялся по значению R_0 соответствующему толщине источника 5 атомных слоев или приводился к этой толщине. При этом значении приповерхностного слоя проводятся все сравнения и градуировки. Поскольку данные измерения выполнены с источником толщиной 11 атомных слоев, в таблице приведены значения R_0 пересчитанные, как если бы источник имел толщину 5 атомных слоев. Выход Y_0 для источника такой толщины связан с вероятностью регистрации одного акта β - – распаде соотношением

$$\mathbf{R}_0 = \mathbf{Y}_0 \boldsymbol{\varepsilon}_0 \boldsymbol{\Omega} \,, \tag{6}$$

где ε₀ - эффективность регистрации e₀ – электрона, падающего на поверхность МКП₁, а Ω - доля собираемых МКП₁ e₀ – электронов.

Чтобы определить $\varepsilon_0 \Omega$, в тех же экспериментальных условиях была измерена вероятность регистрации $R_0 = 2 \cdot 10^{-2}$ для источника ¹⁵²Eu, для которого известно, что при β распаде $Y_0 = 0.34e_0$. Отсюда следует, что в наших экспериментах $\varepsilon_0 \Omega = 6 \cdot 10^{-2}$, это позволяет по экспериментальным значения R_0 определять Y_0 для всех исследованных точек.

Из опасения, что подача напряжения +120 В на поверхности МКП₁ может исказить результаты эксперимента, были проведены подобные измерения в условиях, когда поверхность МКП₁ была заземлена. Тогда N_{e₀β} - определяется из измерений при напряжении на источнике 0 и +24 В, вместо 0 и +160 В. Опасения оказались напрасными, характер

зависимости R_0 от толщины поглотителей остался прежним, но скорость счета $N_{e_0\beta}$ упала в 20 раз, что затрудняло получить хорошую статистическую точность измерений, несмотря на то, что мы увеличили экспозицию регистрации в 4 раза. Значения ΔZ определялись по формуле $Y_0 = 0.11 (\Delta Z)^2$, которая будет рассмотрена позднее. Представленные в таблице значения R_0 , Y_0 , и ΔZ для каждой точки измерений являются усредненными значениями по интервалам энергии β-спектра (см. таблицу).

Обсуждение результатов измерений

На рис.3 представлена зависимость Y_0 от $\overline{E}_{_B}$. При малых значениях $\overline{E}_{_B}$ выход Y_0 составляет несколько е₀ – электронов на один акт β- – распада и быстро падает с ростом энергии, так что при $\overline{E}_{\beta} = 112$ кэВ, что соответствует полному поглощению всего β – спектра, $Y_0 = 0.56 e_0$. Перейдем теперь к рассмотрению зависимости $Y_0(\overline{E}_6)$ после обрезания спектра. Она представляет горизонтальную линию на уровне Y₀ ~ 0.15 е₀. Между точками 10 и 11 наблюдается резкое падение выхода e₀ – электронов Y₀ при прохождении β-частицами толщин поглотителей, соответствующих поглощению β-частиц с энергией от 0 до 6.5 кэВ. Чтобы выяснить причину такого падения Y₀, мы провели экстраполяцию значений Y₀ и m в интервале поглощения β-частиц от 1 до 6.5 кэВ. Это позволило определить зависимость У₀ от средней энергии в интервале 112 – 116.5 кэВ при прохождении их через эти поглотители. Зависимость оказалась близкой к прямой, наклон которой к оси энергии объясняет падение выхода Y₀, которое наблюдается между точками 10 и 11. Первая из этих зависимостей соответствует большому значению ΔZ при прямых соударениях, тогда как вторая - показывает постоянство малого значения ΔZ при встряске. Учитывая пропорциональность выхода e_0 – электронов от квадрата заряда ионизации ΔZ [2], мы можем записать

$$Y_{0} = B \Big[l + \Delta Z_{1} + \Delta Z_{2} \Big(\overline{E}_{\beta} \Big) \Big]^{2}, \qquad (7)$$

При большой энергии \overline{E}_{β} значением ΔZ_2 можно пренебречь, тогда

$$Y_0 = B[1 + \Delta Z_1]^2$$
, (8)

где Y₀ соответствует выходу электронов при встряске. По нашим оценкам $\Delta Z_1 \sim 0.5$ е, откуда следует, B = 0.11. Это позволяет определить изменение заряда атома вследствии прямых соударений ΔZ_2 при малых \overline{E}_{β} .

Далее удобно рассматривать зависимость ΔZ_2 от средней скорости β – частиц \overline{V}_{β} , чем от их энергии. На рис. 4 показана полученная нами зависимость $\Delta Z_2(\overline{V}_{B})$. Она хорошо описывается зависимостью $\Delta Z_2 \sim (\overline{V}_{\beta})^{-1}$. С увеличением \overline{V}_{β} в 3 раза значение ΔZ_2 уменьшается в 3 раза. Такую же зависимость $\Delta Z \sim \overline{V}^{-1}$ мы наблюдали и при внешней ионизации атома, когда пролетающая через приповерхностный слой заряженная частица (электрон или α - частица) создает заряд ΔΖ, что приводит к выходу е₀ – электронов Y₀ $\sim\!\Delta Z^{\,2}.$ Внешняя ионизация отличается от ионизации при прямых столкновениях тем, что при прямых столкновениях β-частица сталкивается с электронами собственной оболочки атома, а при внешней - ионизируется "чужой" атом, при этом механизм ионизации, повидимому,остается тем же. Тогда взаимодействие электрона атомной оболочки с пролетающей мимо него заряженной частицей нужно рассматривать также в приближении "внезапности" [11], поскольку взаимодействие происходит лишь в момент их наибольшего сближения. В приближении "внезапности" возмущения должно выполняться условие $a\omega_{nm}$ V $^{-1}$ < 1, где а – радиус ядра, а ω_{nm} –частота перехода из состояния m в состояние n [12]. В нашем случае, а $\approx 10^{-8}$ см, $\omega_{nm} \approx 10^{16} c$, а $\overline{V}_{\!\beta} \approx 10^{10}$ см/с, неравенство выполняется когда энергия перехода ћ ω_{nm} составляет несколько десятков эВ. В приближении "внезапности" вероятность перехода при прямых столкновениях пропорциональна V⁻¹, то есть пропорциональна времени взаимодействия, в то время как при встряске внезапно возникает

неподвижный заряд, в определенном месте. Если обычную встряску считать "статической встряской", то прямые столкновения можно было бы назвать "динамической встряской".

N т- ки	Толщи на поглот. мкг/см ²	Еоб р, кэВ	Интервал ΔЕ _β кэВ	Ē _β кэВ	√ _β ·10 ¹⁰ см/с	Доля от всего спектра m	Ν _β (10c)	R ₀ 10 ⁻³ (от 11 сл.)	R ₀ ·10 ³ (от 5 сл.)	Y ₀	ΔΖ, e
1	180	8	0-8	6.5	0.480	0.19	4243	53(4)	116	1.93	4.2
2	360	11	0-11	8.0	0.520	0.24	5311	45(3)	99	1.65	3.9
3	540	15	0-15	10.0	0.580	0.26	5841	40(3)	89	1.48	3.7
4	720	18	0-18	11.5	0.626	0.28	6138	37(3)	82	1.37	3.5
5	1350	24	0-24	14.3	0.697	0.30	6768	35(3)	77	1.28	3.4
6	2700	40	0-40	22.4	0.860	0.40	8859	28(2)	63	1.05	3.1
7	5400	55	0-55	29.9	0.984	0.51	11434	25(1)	54	0.90	2.9
8	13500	100	0-100	51.5	1.25	0.69	15273	20(1)	43	0.72	2.6
9	27000	158	0-158	76.7	1.48	0.85	18948	17(1)	38	0.63	2.4
10	0	0	0-357	112.0	1.72	1.00	22243	15.5(5)	34	0.56	2.3
11	180	8	8-357	116.5	1.74	0.81	18000	6.8(9)	15.0	0.25	1.5
12	360	11	11-357	118.3	1.75	0.76	16932	6.2(7)	13.6	0.23	1.5
13	540	15	15-357	120.6	1.76	0.74	16402	6.8(7)	15.0	0.25	1.5
14	720	18	18-357	122.4	1.77	0.72	16105	7.1(6)	15.6	0.26	1.5
15	1350	24	24-357	126.0	1.79	0.70	15475	7.2(7)	15.8	0.26	1.5
16	2700	40	40-357	135.6	1.84	0.60	13384	6.9(8)	15.2	0.25	1.5
17	5400	55	55-357	144.8	1.88	0.49	10809	6.0(8)	13.2	0.22	1.4
18	13500	100	100-357	173.7	2.00	0.31	6970	6.1(10)	13.4	0.22	1.4
19	27000	158	158-357	212.8	2.12	0.15	3294	6.0(14)	13.2	0.22	1.4

Таблица 1. Определение зависимости вероятности регистрации е₀ - электронов R₀ от средней энергии β^- – частиц \overline{E}_{β} в ⁴⁶Sc

Подписи под рисунками

Рис. 1 Схема эксперимента. Пунктирными линиями обозначены контуры камеры.

Рис. 2 Временной спектр (ев) – совпадений, измеренный при толщине Al – поглотителя

180 мкГ/см² и напряжении на источнике 0 В. На вставке – тот же спектр при напряжении на источнике +160 В. Время измерения – 30 мин, цена канала – 0.4 нс.

Рис.3 Зависимость выхода e_0 – электронов с поверхности источника ⁴⁶Sc Y_0 от средней энергии β^- – частиц. Точка 10 (\overline{E}_{β} = 112 кэВ) соответствует выходу Y_0 при регистрации полного β -спектра, без поглотителя.

Рис.4 Зависимость ионизации атома ΔZ_2 , вызванной прямым взаимодействием β^- – частицы с электронами собственной оболочки атома от ее средней энергии \overline{E}_{β} . Кривая, соединяющая экспериментальные точки $\Delta Z_2 \sim \overline{V}_{\beta}^{-1}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. И.С. Баткин, Ю.Г. Смирнов, ЭЧАЯ 11, Вып. 6, 1421 (1980);
- В.Т. Купряшкин, Л.П. Сидоренко, А.И. Феоктистов, И.П. Шаповалова, Изв. А.Н., Сер.физ. 67, № 10, 1446 (2003);
- В.Т. Купряшкин, Л.П. Сидоренко, А.И. Феоктистов, И.П. Шаповалова, Изв. А.Н., Сер.физ. 68, №8, 1208 (2004);
- 4. M.S. Freedman, F.T. Porter, F.I. Wagner, P.P. Day, Phys. Rev., 108, 836 (1957);
- Б.В. Бобыкин, В.П. Бурминский, С.К. Любов, Поверхность. Физика, химия, механика 9, 71 (1992);
- 6. E.L. Feinberg, J.Phys.(USSR) 4, 423 (1941);
- 7. Е.Л. Фейнберг, ЯФ 1, 612 (1965);
- В.Т. Купряшкин, Л.П. Сидоренко, А.И. Феоктистов, И.П. Шаповалова, Изв. РАН, Сер.физ. 69, № 11, 1657 (2005);
- В.Т. Купряшкин, Л.П. Сидоренко, А.И. Феоктистов, И.П. Шаповалова, Изв. РАН, Сер.физ. 69, № 11, 1660 (2005);
- 10. K.H. Weber, Nucl. Instr.a.Methods. 25, №2, 262 (1964);
- 11. Л.Д. Ландау, Е.М. Лифшиц, Квантовая механика, (Наука, Москва, 1974), с. 179;
- 12. А.С. Давыдов, Квантовая механика, (Физматгиз, Москва, 1963). с. 318.

Self-ionization of the atom in β^- decay

A.I. Feoktistov, V.T.Kupryashkin, L.P. Sidorenko

Institute for Nuclear Research, Nat. Acad. Sci. of Ukraine (47, Nauky Prosp., Kyiv 03028, Ukraine)

The dependence of near-zero-energy electron yield from the surface of ⁴⁶Sc source on the energy of β^- particle is measured by (e γ)-, (e β)-coinsidance method. The self-ionization of the atom in β^- -decay by shake-off and direct collisions is determined. It is established independence of shake–off probability on the energy of β^- -particle, while the probability of direct collisions is inversely proportional on β^- -particle velocity. The discussion of measurement results is made in the approximation of sudden appearance of atomic electron perturbation by the charge of incident β^- -particle.