
Eur. Phys. J. A 7, 87–99 (2000) THE EUROPEAN
PHYSICAL JOURNAL A

EDP Sciences
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Abstract. We discuss a model for the description of subbarrier fusion of heavy ions which takes into
account the coupling to the low-energy surface vibrational states and to the few-nucleon transfer with
arbitrary reaction Q-value. The fusion reactions 28,30Si+58,62,64Ni, 40Ca+90,96Zr, 28S+94,100Mo, 58Ni+64Ni,
16,18,20,22,24O+58Ni and 28Si+124,126,128,130,132Sn are analyzed in detail. The model describes rather well
the experimental fusion cross section and mean angular momentum for reactions between nuclei near the β-
stability line. It is shown that these quantities are significantly enhanced by few-nucleon transfer with large
positive Q-value. A shape independent parameterization of the heavy ion potential at distances smaller
then the touching point is proposed.

PACS. 25.60.Je Transfer reactions – 25.60.Pj Fusion reactions – 25.70.Hi Transfer reactions – 25.70.Jj
Fusion and fusion-fission reactions

1 Introduction

Heavy ion fusion reactions at energies below or near the
Coulomb barrier have received considerable attention [1-
36]. Recently many different mechanisms were discussed
for the description of subbarrier fusion reactions as cou-
pling to the low-energy excited states, nucleons transfer,
deformation of ions or neck formation during barrier pene-
tration [3-36]. Fusion cross sections are strongly enhanced
at energies below barrier by the coupling to both the low-
energy surface vibrational states [3-16,28-32] and the few-
nucleon transfer channels [3-11,15-25,32,35]. Models which
take into account the coupling to the low-energy surface
vibrational states as well as to the few-nucleon transfer
channels describe well the fusion cross section σfus(E) and
mean angular momentum of compound nucleus 〈L(E)〉 for
reactions between nuclei near the line of β-stability.

The coupling potentials between the ground state
channel and channels connected with the low-energy vi-
brational states are well-known [1,3-16]. Therefore the the-
ory of fusion cross section enhancement due to coupling
to low-energy vibrational states is well developed. In con-
trast to this, the coupling potential for transfer channels
as a rule is not known with good accuracy. This poten-
tial may be fixed by studying quasi-elastic transfer reac-
tions. Unfortunately, experimental information on quasi-
elastic transfer reactions often is not available. Therefore
the description of fusion cross section enhancement due
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to transfer reactions is based on the fitting parameters.
Moreover, the radial shape of the coupling potential for
transfer channels has various forms in the different mod-
els. For example, the radial dependence of the transfer
coupling potential is chosen in the forms F exp[α(r−R12)]
[3,14] or F exp[α(r − R12)]/r [18], where F is a coupling
constant, α is a constant related to the separation energy
of transferred particles or is taken from systematics [14],
r is the distance between the centre of mass of the ions,
R12 = R1 +R2, R1 and R2 are the radii of the ions. Some-
times the transfer coupling potential has a similar form as
the coupling potential to the low-energy vibrational states
[11,20,30]. The value of the transfer constant is not fixed a
priori and sometimes is chosen by the fitting experimental
data [16,21].

The simplified coupled-channel code CCFUS [13] is of-
ten used for the analysis of subbarrier fusion of heavy ions
[3,7-9,21,30-33]. As pointed out by Landowne (see [7,30])
the CCFUS model overestimates the contributions of the
transfer channels in the case of large positive Q-value of
the transfer reaction.

Recently, by using radioactive ion beams an experi-
mental possibility was available to study fusion reactions
between a nucleus far from the line of β-stability [34]. The
fusion reactions induced by such colliding systems may be
strongly enhanced by transfer reactions with a large posi-
tive Q-value. Therefore it is necessary to develop a simple
model describing fusion reactions that takes into account
the coupling both to the low-energy surface vibrational
states and to the transfer channels with their large posi-
tive Q-values.



88 V.Yu. Denisov: Subbarrier heavy ion fusion enhanced by nucleon transfer

The direct solution of coupled reaction channel equa-
tions is a difficult numerical problem, see for example [20].
It is shown in [9] that the heavy ion fusion cross sec-
tions calculated with the ”exact” microscopic code is in
good agreement with the one obtained by using the CC-
FUS model [13], when transfer channels are not impor-
tant. Therefore we consider the coupling to the low-energy
surface oscillations during the fusion process in the same
manner as in the CCFUS model. We treat the coupling
to the transfer channels in the DWBA approximation [1],
which describes well the quasi-elastic transfer reactions
near barrier [35]. The nucleon transfer during the fusion
reaction will be considered in the WKB approximation
[37].

The probability of barrier penetration is determined
by the action in the WKB approximation [37]. We con-
sider that nucleon transfer takes place during barrier pen-
etration. Therefore the action splits into three terms. The
tunneling from the outer turning point to the distance rtr,
where the transfer of a particle takes place, is described
by the first term. The second term relates to the proba-
bility of the nucleon transfer process at the distance rtr

between the ions. The third term describes the tunneling
from rtr to the inner turning point. The enhancement of
the subbarrier fusion reaction due to the nucleon transfer
process has not been considered in such approximation.

We describe the probability of nucleon transfer by us-
ing the semiclassical model. This model does not employ
a transfer coupling constant. Therefore in our model it is
not necessary to know from other experimental data the
value of the coupling constant related to transfer processes
for the calculation of the subbarrier fusion cross section.
In contrast to previous considerations our method is valid
for arbitrary Q-values of the transfer the reaction.

Our model is discussed in detail in the Sect. 2. In
Sect. 3 σfus(E) and 〈L(E)〉 are calculated within the pro-
posed model and compared with experimental data for
fusion reactions induced by nuclei located along the β-
stability line. The fusion reaction cross section and mean
angular momentum of the compound nuclei obtained in
this model are analyzed in the case of fusion reactions
between β-stable nuclei and nuclei near the neutron drip
line in Sect. 4. Summary and conclusions are presented in
Sect. 5.

2 Subbarrier heavy ion fusion enhanced by
nucleon transfer

The system of coupled channel equations in the case of
coupling to the low-energy vibrational states has the form
[1,3-5,10,11,13,14][

− h̄2

2µi
d2

dr2
+
h̄2`i(`i + 1)

2µir2
+ V (r)−Qi − E

]
ϕi(r)

= −
∑
j

Vij(r)ϕj(r), (1)

where ψi(r) = ϕi(r)/r is the wave function, µi is the re-
duced mass, `i is the value of the orbital momentum in

units of h̄, V (r) is the ion-ion interaction potential, Qi is
the Q-value of the reaction in channel i, E is the collision
energy and Vij(r) is the coupling potential. The coupling
potential between the ground state and the channels con-
nected with the low-energy surface vibrational state of
multipolarity λ is given by [1,3-5,10,11,13]

V0i =
βiRi√

4π

[
dVi−i(r)
dr

+
3

2λ+ 1
z1z2e

2Rλ−1
i

rλ+1

]
. (2)

Here Vi−i(r) is the nuclear part of the ion-ion interactions
V (r), z1 and z2 are the proton numbers, e is the proton
charge and βiRi is the deformation length of the i-th vi-
brational state in the nucleus with radius Ri.

As in [3,4,10,11,13,14] we propose that all reduced
masses µi and orbital momenta `i are equal in all chan-
nels related to vibrational excitations. Then by taking the
radial dependence of the coupling potential at the barrier
position Vij(r) = Vij(R) we diagonalize the system (1)
with the help of the substitution

ϕi(r) =
∑
k

Uikξk(r), (3)

where Uik is the transformation matrix and ξk(r) is the
wave function (eigenvector). The coupling matrix Mij

takes the form∑
ij

UkiMijUjl =
∑
ij

Uki[−Qiδij+Vij(R)]Ujl = εkδkl (4)

and upon diagonalization we find the eigenvalue εk. In
this case the partial fusion cross section σ(E, `) is equal
to [3,5,10,11,13-14]

σ(E, `) =
πh̄2

2µE
(2`+ 1)

∑
k

|Uk0|2T (E,V`k), (5)

where T (E,V`k) is the transmission coefficient obtained
for the one-dimensional effective potential V`k

V`k(r) = V`(r) + εk = V (r) + h̄2`(`+ 1)/(2µr2) + εk. (6)

We conclude from (5) that the partial cross section for
fixed E and ` is determined by the sum of the transmission
coefficients T (E,V`k) obtained for the effective potential
V`k with the weights |Uk0|2. The effect of fusion cross sec-
tion enhancement due to the coupling to the low-energy
vibrational states is related to the smallest eigenvalue εk,
which is negative.

The total fusion cross section is equal to

σfus(E) =
∑
`

σ(E, `). (7)

Let us consider the transfer reaction in the DWBA
approach, which described well nucleon transfer reactions
near and below barrier [1]. In the DWBA approximation
we neglect the influence of the transfer channels on the
channels without transfer and on other transfer channels.
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In this case the matrix M has a box structure. Each box
of the matrix M in (4) is similar to the respective box
without transfer. For each transfer channel we have an
enhancement described by (4)–(6). For the sake of sim-
plicity we propose that the values of εk and |Uk0|2 for each
specific transfer channel do not differ much from the ones
obtained in (4) without transfer. Our proposal is based on
a small variation of both the energies and the deformation
lengths of the vibrational states in heavy nuclei which dif-
fer by several nucleons. In this case the partial fusion cross
section in the transfer channel f is determined also by (4)–
(6), but the transmission coefficient should be calculated
by taking into account the few-nucleon transfer.

If the energy of collision is smaller than the barriers of
the effective potentials before and after nucleon transfer
and if the transfer occurred at the distance rtr, then the
transmission coefficient may be written as

T (E,Vi`k,Vf`k) = 1/{1 + exp[A(E,Vi`k,Vf`k, rtr)]}, (8)

where the action A(E,Vi`k,V
f
`k, rtr) is given by

A(E,Vi`k,Vf`k, rtr) = Ai(E,Vi`k, rtr) +Atr(E, rtr)

+Af (E,Vf`k, rtr). (9)

The action

Ai(E,Vi`k, rtr) = (2/h̄)
∫ ri`k

rtr

√
2µi(r)(Vi`k(r)− E)dr, (10)

describes the tunneling of ions in an effective potential
before nucleon transfer Vi`k from the outer turning point
ri`k up to rtr, the action Af (E,Vf`k, rtr)

Af (E,Vf`k, rtr) = (2/h̄)
∫ rtr

rf
`k

√
2µf (r)(Vf`k(r)− E)dr (11)

is related to the tunneling of ions in an effective potential
after nucleon transfer Vf`k ,

Vf`k(r) = V f` (r) + εk −Qftr (12)

from the point rtr to the inner turning point rf`k of the
effective potential Vf`k(r). Here Qftr is the Q-value of the
transfer reaction in the channel f .

In the case of m-neutron transfer during barrier pene-
tration in fusion of heavy ions the action Atr(E, rtr) con-
nected with the nucleon transfer process may be written
as

Atr(E, rtr) = (2/h̄)
m∑
i=1

√
2MEi(rtr −R12 − δ)

= 2α(rtr −R12 − δ). (13)

This form of the action describes the tunneling of m neu-
trons between spherical square potential wells of the collid-
ing ions. In (13) we introduced a parameter δ because due
to the finite diffuseness of the realistic nucleon-nucleus po-
tential the barrier for the transferred nucleon disappears

at the finite distance δ > 0 between the surfaces of the
ions. The action similar to (13) is often used for the de-
scription of subbarrier neutron transfer reactions between
heavy ions [1,35,39-44].

The wave function of the transferred nucleon may con-
centrate more in the volume or in the surface part of the
nucleus. Due to this the nucleon transfer amplitude related
to the overlap integral of the wave functions can have its
maximum of transfer probability at relatively larger or
smaller distances between colliding ions. It is possible to
take into account this fine effect by a small variation of
the parameter δ in (13).

The distance rtr at which the nucleon transfer takes
place is determined from the principle of minimal action,
see Appendix and [37]. The trajectory of tunneling ob-
tained by taking into account the few-nucleon transfer
between heavy ions has its minimum value of the action
(9) and its maximum value of the transmission coefficient
(8). The few-nucleon transfer is especially important when
Qftr À 1 MeV and the action (11) is small.

Note that the detailed derivation of (8)–(11), (13) by
using the path integral is given in Appendix. These expres-
sions can be also obtained by using the Landau method
of complex classical paths for transitions in systems with
arbitrary degrees of freedom, see for details (52.1) in [37].

The action A(E,Vi`k,V
f
`k, rtr) is a function of the Q-

value of the transfer reaction and of the separation en-
ergies Ei of the transferred nucleons. Therefore the most
favorable condition for the enhancement of subbarrier fu-
sion due to few-nucleon transfer takes place at small sepa-
ration energies of the transferred nucleons Ei and at large
positive Q-values of the transfer reactions.

The expression (8) for the transmission coefficient is
valid for collision energies E smaller than the effective bar-
riers Vi`k, before and Vf`k, after the few-nucleon transfer.
In the case Vf`k < E < Vi`k and rtr > R

f

`k the transmission
coefficient has the form

T (E,Vi`k,Vf`k) = 1/{1 + exp[Ai(E,Vi`k, rtr)

+Atr(E, rtr)]} THW(E,Vf`k). (14)

Here R
f

`k is the barrier distance of the effective potential
Vf`k, THW(E,Vf`k) is the transmission coefficient of the ef-
fective barrier after transfer obtained in the Hill-Wheeler
approximation [45] and taking into account the reflection
during barrier penetration. The subbarrier tunneling of
ions before the nucleon transfer and the subbarrier nu-
cleon transfer are described by the first factor in (14).
The second factor in (14) is related to the transmission
above the barrier between the ions after nucleon transfer.

If Vf`k < E < Vi`k and rtr < R
f

`k, then we should take
into account the decay of the system after the few-nucleon
transfer. In this case the transmission coefficient may be
written as

T (E,Vi`k,Vf`k) = 1/{1 + exp[Ai(E,Vi`k, rtr) +Atr(E, rtr)]}
×(1− THW(E,Vf`k)). (15)
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At the high collision energy E > Vf`k and E > Vi`k we
use the transmission coefficient in the Hill-Wheeler ap-
proximation. The corresponding modification of (14) and
(15) are direct in this case. The expressions (8)-(13) are
valid for the both positive and negative Q-values. The ex-
pressions (14)-(15) are valid for the case Qtr > 0 and may
easily be transformed to the case Qtr < 0.

Nucleon transfer depends on the kinematic conditions
related to Q-value preference of the heavy ions transfer
reactions [1,15,35,38,39]. This kinematic conditions are
described by the Gaussian-shape function [15,35,38,39]

F (Q) = exp (−((Qtr −Qopt)/Γ )2), (16)

whereQopt is the optimumQ-value of the transfer reaction
and Γ is the width of Q window

Γ = 2h̄
(
α(2E − V (R))

µR

)1/2

. (17)

Here the V (R) and R are the value and the position of
the barrier respectively, α is the asymptotic slope of the
nucleon wave function far from the nucleus (see (13) for
details). Function (16) describes well the experimental fea-
tures of transfer reactions near barrier [35,39,40]. The op-
timum Q-value is close to zero for neutron transfer [1,35].

Let us consider the compound nucleus formed in trans-
fer channel f with the ground state Q-value Qfgg. The nu-
cleon may also transfer to excited states [15]. Therefore
the fusion cross section enhanced by the coupling to the
transfer channel f and to the low-energy surface vibra-
tions is equal to

σffus(E) =
∑
`

σffus(E, `)

=
πh̄2

2µE

∑
`

(2`+ 1)
∑
k

|Uk0|2

×
∫ Qfgg

−∞
dQtr T (E,Vi`k,Vf`k) F (Qtr) g(Qtr), (18)

where g(Qtr) is the level density. Due to sharp exponential
dependence of the transmission coefficient we may limit
the integral in (18) to the range from ≈-10-15 MeV to
Qfgg or even shorter and neglect the dependence of g(Qtr)
on Qtr. We apply the value of level density at the Fermi
surface g(Qtr) = gF = (6/π2)g(N) = 6N/(π2agi) [15,46],
where N is the number of neutrons in the ion that accepts
i neutrons during transfer, g(A) = A/ag is the parameter
of level density used in statistical model [46] and A is the
number of nucleons in the nucleus. The compilation of the
empirical values of parameter g(A) is presented for some
nuclei in [47].

Note that the value of Q-window width Γ is rather
large (as a rule several MeV [1,35,39,40]), therefore the
enhancement of heavy ion fusion due to neutron transfer
is very important.

Equation (18) is valid under the assumption that the
total flux of incident channel is going into this particular

transfer channel. The other transfer channels and channels
without transfer also give contributions into the fusion
cross section. The incident channel flux is divided between
the different channels. Therefore the total cross section is
written as

σfus(E) =
∑
f,`

Wf (E, `)σffus(E, `). (19)

Here

Wf (E, `) =
Pf (E, `)∑
f Pf (E, `)

, (20)

is the weight of transfer channel f in the total fusion cross
section and

Pf (E, `) =
∑
k

|Uk0|2

×
∫ Qfgg

−∞
dQtr T (E,Vi`k,Vf`k) F (Qtr) g(Qtr)

is the coefficient relating to the probability of trans-
fer channel f . Note that channels without transfer are
also accounted for in (19)-(20) with factor P (E, `) =∑
k |Uk0|2T (E,Vi`k).
In the case of m neutron transfer with Q-value Qtr we

proposed that every neutron is transferred with the same
Q-value Qtr/m and the factor F (Q) in (18) and (20) is
the product of single-neutron factor F (Q) (16).

Note that the contributions of the channels with Qtr ≈
0 to the total cross section are small and negligible for
Qtr << −1 MeV due to the exponential dependence
of the transmission coefficient in the actions. Here we
are not consider special cases when the transferred par-
ticle(s) exchanged between identical nuclei as in the cases
of 12C+13C [20] or 58Ni+60Ni.

Now we determine the interaction potential between
two ions at distance r,

V (r) = z1z2e
2/r + Vi−i(r). (21)

Many different parameterizations of the nuclear interac-
tion potential Vi−i(r) between spherical ions [1-7,47] are
available. We choose the Krappe-Nix-Sierk VKNS(r) [48]
potential in our calculation for r ≥ R12 = R1 + R2. The
potential VKNS(r) and the Coulomb energy depend on the
shape of the ions at r < R12. We would like to avoid
a shape dependence of the potential V (r). Hence we use
a parameterization of the interaction potential V (r) for
r < R12 in the form

Vfus(r) = −Qfus + x2(c1 + c2x), (22)

where Qfus is the Q-value of the fusion reaction obtained
by using the mass table [49] or by using the mass formula
[50], x = (r −Rfus)/(R12 −Rfus), Rfus is the distance be-
tween the centers of mass of the left and right parts of the
spherical compound nuclei. The coefficients c1 and c2 are
obtained by matching at the touching point R12 = R1+R2

for the potentials V (r) (17) and Vfus(r) (18) and for its
derivatives. We propose a quadratic dependence of Vfus(r)
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Fig. 1. Fusion cross sections for the reactions 28Si+58,62,64Ni (top) and 30Si+58,62,64Ni (bottom). Experimental data (dots)
are taken from [31]. The results of the calculation taking into account both the low-energy 2+ and 3− states and the neutrons
transfer channels are shown by the solid curves. The results of the calculation taking into account the coupling to the low-energy
2+ and 3− states are marked by the dash curves. The dash-dots curves correspond to the calculation with transfer channels
only and the results of the calculation in the one-dimensional WKB approach are shown by dotted curves

at the point x = 0 because the potential (deformation) en-
ergy of the highly excited compound nucleus is minimum
for the spherical shape, i.e. at x = 0.

The reduced mass µ for r > R12 is determined by using
a standard expression, see for example [1]. The reduced
mass in (10) and (11) for r < R12 is a function of r. We
used the parameterization of µ(r) introduced in [51]

µi(f)(r) = µi(f){(17/15) k[(R12 − r)/(R12 −Rfus)]2

× exp[−(32/17) (r/Rfus − 1)] + 1}, (23)

where k = 16 [51]. This semi-empirical dependence of the
reduced mass is successfully used in the calculation of the
lifetime of heavy nuclei for fission [51] and cluster [52]
decays.

Note that if we neglect the influence of the transfer
channels then the treatment of enhancement of coupled
channels due to the low-energy excitations in our model
is similar to the CCFUS model [13]. In this case the dif-
ference between our model and the CCFUS model is re-
lated to the calculation of the transmission coefficient be-

low barrier. Below barrier this coefficient is estimated in
the CCFUS model by using the Hill-Wheeler approxima-
tion [45] but we use the WKB approximation instead and
obtain this coefficient by using the action. (Here we ne-
glected the difference related to the parameterization of
the nuclear part of the ion-ion potential because the cal-
culations in both models can be done for the same param-
eterization of the nuclear potential.) Hence, if we neglect
transfer channels our and the CCFUS models lead to sim-
ilar results.

3 Entrance channel effects at fusion reactions

Let us consider several fusion reactions between nuclei lo-
cated near the line of β-stability.

First we study isotopic effects in the fusion reactions
28,30Si+58,62,64Ni. The fusion cross sections calculated in
different approaches for these reactions are compared with
the experimental data [31] in Fig. 1. The one-dimensional
tunneling model strongly underestimates the experimental
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Table 1. Excitation energies E`, deformation parameters β` and multipolarities ` of the low-energy surface vibrational states,
the values of the parameter r0 in the VKNS(r) nuclear potential [47] and the values of level density parameter ag

Nucleus E2 (MeV) β2 E3 (MeV) β3 r0 (fm) ag (MeV)

16O 6.92 0.36 6.13 0.60 1.21 10.37
18O 1.98 0.39 5.10 0.48 1.21 10.37
20O 1.63 0.39 5.62 0.48 1.21 10.37
28Si 1.78 0.41 6.88 0.39 1.165 11.81
30Si 2.24 0.22 5.59 0.15 1.20 12.55
40Ca 3.90 0.11 3.74 0.34 1.21 11.43
58Ni 1.45 0.18 4.47 0.22 1.18 13.62
62Ni 1.17 0.22 3.76 0.14 1.19 10.33
64Ni 1.34 0.17 3.56 0.15 1.20 10.19
90Zr 2.19 0.08 2.75 0.14 1.21 12.66
96Zr 1.76 0.12 1.91 0.22 1.23 11.43
94Mo 0.87 0.128 2.53 0.161 1.175 10.12
100Mo 0.534 0.226 1.91 0.21 1.185 8.21
124Sn 1.13 0.076 2.59 0.072 1.18 10.42
126Sn 1.14 0.076 2.72 0.072 1.18 10.52
128Sn 1.17 0.076 2.76 0.072 1.18 10.62
130Sn 1.22 0.076 2.49 0.072 1.18 10.71
132Sn 1.22 0.076 2.49 0.072 1.18 10.81

fusion cross sections for the reactions 28,30Si+58,62,64Ni,
see Fig. 1. We obtain similar results if neutron transfer
channels with positive Q-value are taken into account, see
Fig. 1. We describe well the experimental fusion cross
sections for these reactions when the coupling to the
low-energy 2+ and 3− surface excitation states is taken
into account. However, we obtain better agreement with
the experimental data for the reactions 28Si+62,64Ni and
30Si+58Ni when the coupling to the low-energy vibrational
states and to the neutron transfer channels is taken into
account simultaneously, see Fig. 1.

In our calculations we are taking into account 1-, 2-,
3- and 4-neutron transfer channels with positive Q-values.
The Q-values of transfer reactions are obtained by using
the mass table [49]. The Q-values of neutron transfer reac-
tions for reactions 28Si+62,64Ni and 30Si+58Ni are small.
Here and below we can neglect transfer channels with neg-
ative Q-value, because the influence of these channels is
negligible. The energies and the deformation parameters
of 2+ and 3− vibrational states were taken from other
experimental data, see in [31,53]. These parameters are
listed in Table 1. Here and below for the sake of fitting
the experimental fusion cross section at high energies for
these reactions we slightly change the parameter of the
nuclear radii r0 (Ri = r0A

1/3
i ) in the KNS potential [48].

The values of r0 used in our calculations are also given
in Table 1. The values of r0 for the Si and Ni in Table
1 insignificantly differ from r0 = 1.18 fm recommended
in [48]. We have done the calculation of the action (13)
for δ = 0.7 fm. This value of δ is reasonable, because it
should be close to the value of the diffuseness of the real-
istic nucleon-nucleus potential.

We determine the value of statistical level density pa-
rameter g(A) by using compilation [47]. When the value of
g(A) is not available in the compilation [47], we evaluate

the value of g(A) by using linear interpolation from near-
est isotope(s). Note that nuclei close to double magic have
very small level density [46,47]. Due to this we use some-
what larger value ag = 13.62 MeV for isotope 58Ni then
that evaluated by using linear interpolation, 12.62 MeV.
The values of ag (ag = A/g(A)) for nuclei considered here
is listed in Table 1.

The nuclei 62,64Ni and 30Si are donors of neutrons in
the reactions 28Si+62,64Ni and 30Si+58Ni. The fusion cross
sections in collision of 28Si with Nickel isotopes are en-
hanced with increasing the number of neutrons in Ni. Note
that the same compound nucleus is formed in the fusion
reactions 28Si+64Ni and 30Si+62Ni, but the fusion cross
section for the former reaction is larger than for the latter
due to the different values of the parameters of the 2+

and 3− surface vibrational states (see in Table 1) and the
various contributions of the transfer channels.

The quality of description of the experimental fusion
cross sections for the reactions Si+Ni in Fig. 1 in our
model is similar to the one obtained by using the CC-
FUS model in [31]. This means that both models lead to
similar results for transfer with the small Q-values.

Now we consider fusion reactions with large Q-values
in the neutron transfer channels.

The fusion cross sections of 40Ca+90,96Zr [22] have
been measured recently. The Q-values of 2- and 4-neutron
transfer from 96Zr to 40Ca are equal to 5.526 MeV and
9.637 MeV respectively. In contrast to this the reaction
40Ca+90Zr has negative Q-values for the transfer of neu-
trons.

The Coulomb field at large distance for these reactions
is the same. The heights of barriers have similar values for
these reactions, see Fig. 2. Therefore we may expect that
the subbarrier fusion cross sections for these reactions also
are similar. However, the experimental subbarrier fusion
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Fig. 2. Effective potential for the reaction 40Ca+90,96Zr for
the case ` = 0 and εk = 0 without and with 1, 2, 3 and 4
neutrons transfer from 96Zr to 40Ca and the effective potential
for reactions 40Ca+90Zr without neutron transfer for ` = 0 and
εk = 0

cross sections for the reaction 40Ca+96Zr is much larger
than for the reaction 40Ca+90Zr, see Fig. 3 and [22].

At the beginning we try to describe these reactions
by using the 1-dimensional WKB approach. The calcula-
tions of σfus(E) for both reactions in the one-dimensional
tunneling approach yield similar values of the fusion cross
sections. But we can see from Fig. 3 that these calculations
strongly underestimate the experimental data.

The comparison between the experimental data and
the theoretical curves in Fig. 3 is drastically improved for
the reaction 40Ca+90Zr when the low-energy surface vi-
brational 2+ and 3− states in colliding nuclei are taken
into account. The deformations β2,3 are taken from an-
other experimental data [53] and are given in Table 1.
Nevertheless, the theoretical curves obtained in this ap-
proach for reaction 40Ca+96Zr still underestimate the ex-
perimental data in Fig. 3.

We performed calculation by taking into account four
transfer channels related to 1-, 2-, 3- and 4-neutron trans-
fer from 96Zr to 40Ca. The heights of barriers of the ef-
fective potentials related to 2-, 3- and 4-neutron trans-
fer channels are essentially lower then barrier of potential
without neutron transfer, see Fig. 2. Therefore we have
significant enhancement of the subbarrier fusion cross sec-

Fig. 3. Fusion cross sections for the reactions 40Ca+96Zr (top)
and 40Ca+90Zr (bottom). Experimental data (dots) are taken
from [22]. The notations are the same as in Fig. 1

tion by taking into account 2-, 3- and 4-neutron transfer
channels. The curves in Fig. 3 associated to this calcula-
tion also underestimate the experimental data. Note that
the enhancement of subbarrier fusion cross section due to
neutron transfer for reaction 40Ca+96Zr in Fig. 3 is much
larger than the ones for the reactions Si+Ni in Fig. 1
because of different Q-values of the neutron transfer re-
actions for this systems. The model describes the exper-
imental data for the reaction 40Ca+96Zr when we take
into account the coupling both to the low-energy surface
2+ and 3− vibrational states and to the 4 transfer chan-
nels, see Fig. 3. This calculation slightly underestimates
the experimental fusion cross section 40Ca+96Zr for very
low energies. Probably for this reaction it is necessary to
take into account the coupling to a larger number of ex-
cited surface vibrational states, as done in [22] for reaction
40Ca+90Zr, and to a correlated 2- and 4-neutron transfers.

The reactions 40Ca+90,96Zr are also analyzed in [22]
by taking into account the coupling to the 1- and 2-
phonon surface vibrational states. The theoretical curves
obtained in [22] describe well the experimental data for the
40Ca+90Zr and strongly underestimate the experimental
data below barrier for the reaction 40Ca+96Zr.
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Fig. 4. Fusion cross section (top) and mean angular momentum (bottom) for the reactions 28Si+100Mo (left) and 28Si+94Mo
(right). Experimental data (dots) are taken from [32]. The notations are the same as in Fig. 1

Now we consider the fusion reactions 28Si+94,100Mo.
We take into account both the low-energy 2+ and 3− sur-
face vibrations and the 1-, 2-, 3-, 4-, 5- and 6-neutron
transfer channels with positive Q-values in the calcula-
tions of the fusion cross sections for 28Si+100Mo. For re-
action 28Si+94Mo the coupling to the 2+ and 3− surface
vibrations and to the 1- and 2-neutron transfer channels
with positive Q-values is taken into account in the calcula-
tions. The deformations β2,3 are taken from another exper-
imental data [53] and are listed in Table 1. We can see in
Figs. 4 that our calculations describe well the experimen-
tal fusion cross sections for the reactions 28Si+94,100Mo
[32].

The comparison between the theoretical values and
the experimental data for the mean angular momen-
tum 〈L(E)〉 =

∑
` `σ(E, `)/σ(E) for the reactions

28Si+94,100Mo is also presented in Fig. 4. The calculation
taking into account both the low-energy surface vibra-
tional 2+ and 3− states and the transfer channels describes
the experimental data for 〈L(E)〉 for these reactions. The
coupling to the transfer channels enhances 〈L(E)〉 near
the barrier and leads to a bump in 〈L(E)〉 at energies
below barrier.

The reactions 28Si+94,100Mo are also analyzed in [32]
by taking into account the coupling to the 2+ and 3−
surface vibrational states and to the 2-neutron trans-
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Fig. 5. Fusion cross sections for the reactions 58Ni+64Ni. Ex-
perimental data (dots) for reactions 58Ni+64Ni are taken from
[32,33]. The results of the calculation taking into account both
the low-energy 2+ and 3− states and the neutron transfer chan-
nels are shown by the solid curve in the case of microscopic
coupled channel model [16] and by the dash-dot curve in the
case of semiclassical model. The results obtained in the one-
dimensional approximation in these models are shown by the
dash and the dash-dot-dot curves respectively

fer channel. The 2-neutron transfer channel is treated in
[32] phenomenologically. The theoretical curves obtained
in [32] also describe well the experimental data for the
28Si+94,100Mo reactions.

The fusion reaction cross section 58Ni+64Ni was mea-
sured in [32,33]. The 2-neutron transfer from 64Ni to 58Ni
has positive Q-value 3.9 MeV.

The elastic, inelastic, 1n and 2n transfer and fusion
reactions in collision 58Ni+64Ni are well described in the
framework of the microscopic coupled channel approxima-
tion [16]. The microscopic calculation [16] is done by direct
solution of the coupled channel equations. The coupling
to the neutron transfer channels is very important for this
system [16]. Below we analyze the fusion cross section for
reaction 58Ni+64Ni in the framework of our semiclassical
model. The comparison between the theoretical values ob-
tained in the models and the experimental data for fusion
cross section for the reaction 58Ni+64Ni is presented in
Fig. 5. Both models describe well the experimental data,
as seen in Fig. 5.

We change a little the parameter r0 = 1.214 fm for 64Ni
respectively from listed in Table 1 for the sake of coinci-
dence of the fusion cross sections obtained in microscopic
and semiclassical calculations in the one-dimensional ap-
proximation near and below barrier. In this case we can
evaluate the difference between microscopic and semiclas-
sical calculations which originates only from the coupling
to both neutron transfer and vibrational states. Using such
comparison, we can check the accuracy of our semiclassical
approximation.

Comparing results of different calculations in Fig. 5,
we may conclude that the semiclassical model agrees well
with the detailed microscopical coupled channel calcula-
tion. However we should make two comments.

1. The semiclassical model slightly overestimate micro-
scopic calculation at collision energies near barrier (94-98
MeV), as seen in Fig. 5. This take place due to small value
of the action at the energies close to 94-98 MeV. It is well-
known that the semiclassical approximation has good ac-
curacy in the case of large value of the action or far from
the barrier energy [37]. At higher and lower collision ener-
gies the difference between semiclassical and microscopic
calculations is diminished (see Fig. 5).

2. The cross section evaluated in the one-dimensional
microscopic calculation is slightly distinguished from sim-
ilar semiclassical calculation, as seen in Fig. 5. Therefore,
the difference between semiclassical and microscopic cal-
culations in Fig. 5 is not so important, because it may
be connected to different parametrizations of the nuclear
ion-ion interaction in the models.

The comparison of the theoretical curves with the ex-
perimental data in Figs. 1, 3–5 shows that our model
describes the entrance channel effects in the subbarrier
fusion of a nuclei located along the β-stability line. The
neutron transfer channels are very important for the reac-
tions 40Ca+96Zr, 28Si+94,100Mo and 58Ni+64Ni near and
especially below barrier, see Figs. 3–5.

4 Subbarrier fusion of nuclei far from the
β-stability line

The subbarrier fusion reactions between a nucleus near
to the proton drip line and a nucleus near to the neu-
tron drip line should be the most strongly enhanced by
the few-nucleon transfer because in this case the separa-
tion energies of the transferred particles are small and the
Q-values of the transfer reactions have very large posi-
tive values. However, it is difficult to perform experiments
for such systems. Therefore we study the fusion reaction
between a nucleus near to the neutron drip line and a β-
stable nucleus in this section. The fusion cross section for
such systems may be measured by using radioactive ion
beams.

The fusion cross sections for the reactions
16,18,20,22,24O+58Ni obtained in our model are shown in
Figs. 6 and 7. The parameters of the low-energy 2+ and
3− states for 16,18O and 58Ni taken from [53] are listed
in Table 1. The experimental energies of the first 2+ and
3− states for the neutron-rich isotope 20O are known [53]
but the experimental deformations β2 and β3 of these
states are not available. Therefore in the calculation we
take the same deformations β2 and β3 for 20O as for
18O. The experimental data for both energies and the
deformation parameters of 2+ and 3− states for extremely
neutron-rich isotopes 22,24O are absent. Due to this we
take the same values of these parameters as for 20O in
calculations.

We choose the values of r0 (see Table 1), diffuseness
0.45 fm of the KNS potential and δ = 1.4 fm for all reac-
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Fig. 6. Fusion cross sections for the reactions
16,18,20,22O+58Ni. Experimental data (dots) for reactions
16,18O+58Ni are taken from [36]. The notations are the same
as in Fig. 1

tions with oxygen by using the experimental fusion cross
section [36] near barrier for the reactions 16,18O+58Ni.
(Note that we have taken δ = 0.7 fm for all other reac-
tions discussed above.) The wave functions of the neutrons
above the magic number 8 in oxygen isotopes are located
in the surface region. Therefore due to the small separa-
tion energies of the neutrons in the neutron-rich oxygen
isotopes and due to the surface localization of the trans-
ferred neutrons the large value of δ is reasonable for these
reactions. The value of diffuseness of ion-ion potential for
the reactions with oxygen isotopes is smaller then 0.65
fm recommended in [48], but small value of diffuseness of
ion-ion potential is often used in the analysis of reactions
with light nuclei, (see, for example, [20]). The experimen-
tal data for 16,18O+58Ni are well described in the frame-
work of our model, see Fig. 6.

The fusion cross sections for 16,18,20,22,24O+58Ni
slightly increase with the number of neutrons for energies
near the barrier. The fusion cross sections below barrier
are strongly enhanced by the few-neutron transfer from
oxygen to nickel. We take into account channels with 1-
, 2-, 3- and 4-neutrons transfer in calculations for the
reactions 18,20,22O+58Ni. For the reaction 24O+58Ni we

Fig. 7. Fusion cross section (top) and mean angular momen-
tum (bottom) for reaction 24O+58Ni. The partial contributions
of channels with 1, 2 and 3 neutrons transfer to the total cross
section are marked by filled squares and open ellipses in the
cases with and without contributions related to 2+ and 3− low-
energy excited states, respectively. The other notations are the
same as in Fig. 1

employ only three transfer channels related to 1-, 2- and
3-neutron transfer. The influence of few-neutron transfer
channels is important below barrier, see Figs 6-7. The en-
hancement of subbarrier fusion cross section due to neu-
tron transfer channel increases with the number of neu-
trons in oxygen.

The partial contributions of the channels with 1-, 2-
and 3-neutron transfer to the total fusion cross sections
24O+58Ni are shown in Fig. 7. We may conclude that the
1-neutron transfer channel is important for energies near
the barrier, the 2-neutron transfer channel gives dominant
contributions for low energies and the 3-neutron transfer
channel give small contributions for energies larger than
23 MeV.

The energy dependence of the mean angular momen-
tum 〈L(E)〉 of the compound nucleus formed in the fu-
sion reaction 24O+58Ni in different approaches is shown
in Fig. 7. We can see in Fig. 7 that the 1-neutron transfer
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Fig. 8. Fusion cross section (top) and mean angular momen-
tum (bottom) for the reactions 28Si+124,126,128,130,132Sn

channel enhances 〈L(E)〉 near barrier and the 2-neutron
transfer channel leads to the maximum in 〈L(E)〉 at sub-
barrier energies.

Note that the fusion cross sections for systems
24O+58Ni and 40Ca+96Zr have different behaviors near
barrier due to the 1-neutron transfer channel contribution.
This channel is not important for the reaction 40Ca+96Zr
in contrast to the reaction 24O+58Ni. Such difference is
related to the Q-values of the 1-neutron transfer channel
for these reactions: Q1n = 5.29 MeV for 24O+58Ni and
Q1n = 0.508 MeV for 40Ca+96Zr.

The energy dependence of the fusion cross sections
and of the mean angular momentum for the reactions
28Si+124,126,128,130,132Sn are presented in Fig. 8. In the
calculations we take into account both the 1-, 2-, 3- and
4-neutron transfer channels from the tin isotopes to sili-
con and the coupling to 2+ and 3− low-energy states. We
see in Fig. 8 that σfus(E) and 〈L(E)〉 increase drastically
with the number of neutrons in the tin isotopes due to the
two-neutron transfer below barrier.

Our calculation of σfus(E) and 〈L(E)〉 for the reactions
28Si+124,126,128,130,132Sn is done for δ = 0.7 fm, because
the 132Sn is a double magic nucleus. The values of the
parameters of the 2+ and 3− low-energy states and the

radii r0 in the KNS potential are listed in Table 1. Note
that in the case of tin isotopes we know the values of the
energies and the deformation parameters β2,3 of the 2+

and 3− states for 124Sn only, see [53]. The experimental
deformations β2,3 for the isotopes 126,128,130,132Sn are not
known [53]. Therefore we take the same values of β2 and
β3 for these isotopes as for 124Sn. The energies of the 2+

and 3− states in 124,126,128,130Sn are located around 1.1-
1.2 MeV and 2.5-2.8 MeV, respectively [53]. The known
experimental energies of the first 2+ and 3− states in 132Sn
[53] are higher than the corresponding ranges of energies
of the first 2+ and 3− states in 124,126,128,130Sn. For the
reason of systematic of the excitation energies in the tin
isotopes we take the same energies of the 2+ and 3− states
for 132Sn as for 130Sn.

5 Conclusions

We have analyzed the subbarrier fusion cross sections, the
mean and angular momentum induced by heavy ions col-
lisions. The coupling to the low-energy surface vibrational
states and to the subbarrier few-neutron transfer channels
are taken into account in our model.

It is shown that the few-nucleon transfer with a large
positive Q-value leads to strong enhancement of σfus(E)
and 〈L(E)〉. Due to few-nucleon transfer the slope of the
fusion cross section changes and a non-monotonous energy
dependence appears in 〈L(E)〉.

The few-nucleon transfer enhancement of subbarrier
fusion reactions is very important for the case of systems
with small separation energies of the transferred particles
and with large positive Q-value of the transfer reactions.
The favorable conditions for this enhancement take place
in reactions between a nucleus near the neutron drip line
and a nucleus along the line of β-stability. As a rule, the
most important contributions to the few-nucleon transfer
enhancement of the subbarrier fusion are related to the 1-
and 2-nucleon transfer channels.

Our model has been applied to the few-neutron trans-
fer case in this paper. The inclusion of few-proton transfer
in our model is direct because it is necessary to take into
account the Coulomb interactions between the ions and
the transferred protons in the action (13). An extension
of our model to the case of neutron-proton transfer is also
straightforward but the sequence of the neutron-proton
transfer should be taken into account due to the different
values of the separation energies of nucleons for different
sequences of neutron-proton transfer.

Our calculation is based on the parameterization (18)
of the ion-ion interaction at small distance. The parame-
terization (18) is matched with the Coulomb and the KNS
nuclear interactions in Sec. 2. Note that this parameter-
ization may be matched with any other potentials and
may be used for the description of other reactions near
the barrier.

We consider sequential transfer of neutrons. This
transfer mechanism is may apply for colliding nuclei lo-
cated not very far from β-stability line. For extremely far
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from the β-stability line colliding nuclei probably is nec-
essary to take into account correlated transfer of neutrons
[8]. The correlated neutron transfer may be especially im-
portant in the case of fusing system with two-neutron halo
nucleus. It is possible to consider correlated transfer of
neutrons in the framework of the model also if we change
the action (13) correspondingly.

The author would like to thank R.W. Hasse and F.A. Ivanyuk
for careful reading of manuscript. He acknowledges gratefully
support from GSI. He also would likes to thank A.M. Stefanini
for bringing the Table of experimental data measured in [22]
to his attention before publication.

6 Appendix

We derived expression (8)–(13) by using the path integral
representation of the quantum mechanics amplitude [54].

The amplitude of transition through the barrier in the
case of two variables is connected with the path integral
[54]

〈Rf , rf |Ri, ri〉 =
∫
DR(t)Dr(t) exp (iS[R, r]/h̄), (A.1)

where S[R, r] is the action. Variables r and R are asso-
ciated with the coordinates of relative motion of the ions
and the transferred neutron respectively. The coordinates
with indexes i(f) are related to the initial (final) turning
point.

By using the properties of the path integral [54], we
rewrite the amplitude in the form

〈Rf , rf |Ri, ri〉

=
∫
DR1(t) Dr1(t)DR2(t) Dr2(t) 〈Rf , rf |R2, r2〉

〈R2, r2|R1, r1〉〈R1, r1|Ri, ri〉. (A.2)

The velocity of transferred neutron is related to the
Fermi energy. At low collision energies the velocity of
transferred neutron is much higher then the relative ve-
locity of ions at small distance between them in classical
allowed region. Due to this and large difference between
the neutron mass and the ions’ reduced mass µ, we may
consider that in the classical forbidden region the collec-
tive degree of freedom r is much slower then single-particle
R. Let us assume that the transfer of neutrons takes place
in the path between (R1, r1) and (R2, r2). The transfer is
fast process in comparison with ions motion, and we can
consider the neutron transfer in the instantaneous limit
r1 → r2 = rtr. The transition amplitude (A.2) for the
ions’ barrier penetration in this limit is presented as

〈Rf , rf |Ri, ri〉 =
∫
Drtr(t) 〈Rf , rf |Rf , rtr〉

×〈Rf , rtr|Ri, rtr〉 〈Ri, rtr|Ri, ri〉. (A.3)

Notice that since the paths are weighted with exp (S)
(A.1), important contribution to the transition amplitude

are expected to arise from those paths for which S takes
values close to the minimum. It leads us to the principle
of the minimal action used in section 2.

The path integral and the Schrödinger representations
of the transition amplitude are equivalent [54]. By using
the semiclassical approximation for the transition ampli-
tude in the classically forbidden region in the Schrödinger
representation [37], we present square of the amplitude (or
transmission coefficient (8)) in the form

|〈Rf , rf |Ri, ri〉|2
≈ | exp[−2i/h̄(Si[Ri, ri, rtr] + Str[Ri, Rf , rtr]

+ Sf [Rf , rtr, rf ])]|
= exp [−Ai(E,Vi`k, rtr)−Atr(E, rtr)−Af (E,Vf`k, rtr)],

(A.4)

where rtr is obtained using the principle of the minimal
action, and the actions A are presented by expressions
(10), (11) and (13).

We obtain expression (13), if we suggest that the trans-
fer of m neutrons also occurs sequentially at the same
point rtr as transfer of the first transferred neutron.

The (8) and (A.4) coincides one with another with
the exponential accuracy. We use in our calculations (8),
because the expression (8) for transmission coefficient co-
incides with one-dimensional transmission coefficient [55],
if the neutron transfer in the course of barrier penetration
is neglected.
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