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Abstract—For nuclei where the number of protons lies in the range 76 ≤ Z ≤ 400, proton and neutron
shell corrections are calculated along the beta-stability line described by Green’s formula. The magic
numbers of protons and neutrons are determined for ultraheavy nuclei. Alpha-decay half-lives and fission
barriers are estimated for ultraheavy doubly magic nuclei. c© 2005 Pleiades Publishing, Inc.

INTRODUCTION

Magic numbers corresponding to the filling of nu-
clear shells of single-particle levels have been known
since the middle of the past century, and the role
that they play in nuclear physics is of crucial impor-
tance [1–4]. Nuclei where the numbers of nucleons
are magic are more stable and have a higher binding
energy than their neighbors and are more abundant
in nature than them [1–4]. Many quantities, such as
the energies required for the separation of one and two
nucleons, the energies of alpha and beta transitions,
pairing energies, and the excitation energies of low-
lying vibrational states, undergo discontinuities upon
passing a magic number [1–4].

The magic numbers Z = 82 and N = 126 are the
greatest magic numbers that have been empirically
confirmed to date for protons and neutrons, respec-
tively. It should be noted, however, that, at matter
densities close to nuclear-matter densities, there oc-
curs a transition in neutron stars from nuclei, neutron
drops, neutrons, and protons to fusing and decaying
heavy nuclei [5, 6], which transform, as the density
increases further, into a more complicated state of
nuclear matter [5–7]. Therefore, very heavy nuclei can
be formed in neutron stars. The existence of neutron-
rich nuclei where the number of neutrons is about
103–105 and of supercharged nuclei where the num-
ber of protons is about 1600 is discussed in [6]. It
would be interesting to find magic numbers in ultra-
heavy nuclei where the number of nucleons falls with-
in the range 300 ≤ A ≤ 1200. In neutron stars, the
relative production rate for ultraheavy nuclei involv-
ing a magic number of nucleons would be enhanced
because of their higher stability. The results presented
in [8] also provoke interest in studying magic numbers
in the region of superheavy nuclei.

It is well known that magic numbers correspond
to the filling of nucleon shells in spherical beta-stable
nuclei [1–4, 9–12]. The shell correction has a deep

local minimum in the vicinity of a magic number [4,
9–14]. Calculating shell corrections for spherical nu-
clei involving various numbers of protons and neu-
trons, one can therefore determine magic numbers
from the positions of deep local minima in the proton
and neutron shell corrections. It should be noted that
nuclei lying along the beta-stability line and having
empirically known magic numbers of nucleons (Z =
8, 20, 28, 50, 82, N = 8, 20, 28, 50, 82, 126) are
spherical [4, 11]. In the following, we will therefore
also explore shell corrections in spherical nuclei.

CALCULATION OF SHELL CORRECTIONS

Figure 1 shows the proton (δP ), neutron (δN ),
and total (δP + δN ) shell corrections calculated for
76 ≤ Z ≤ 400 even–even spherical nuclei lying along
the beta-stability line approximated by Green’s for-
mula [15], from which it follows that a nucleus involv-
ing Z protons and NGreen(Z) = (2/3)Z + (5/3) ×
(10 000 + 40Z + Z2)2 − 500/3 neutrons corresponds
to the beta-stability valley [15]. Green’s formula
describes well the beta-stability line, which is asso-
ciated with a specific relation between the numbers
of protons and neutrons for nuclei known to date.
Let us assume that that the relation between the
numbers of protons and neutrons in beta-stable
nuclei that is described by Green’s formula is valid
for heavier nuclei inclusive. Figure 1 shows the shell
corrections calculated for nuclei involving an even
number Z of protons in the range from 76 to 400
and an even number N of neutrons in the range
NGreen − 10 ≤ N ≤ NGreen + 10, where NGreen is the
even number closest to NGreen(Z). The numbers of
neutrons and nucleons in nuclei were varied in the
range 102 ≤ N ≤ 820 and in the range 178 ≤ A ≤
1218, respectively.

The energies of single-particle levels of nucleons
were calculated for the nucleon mean field in the
form of the Woods–Saxon potential with allowance
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Fig. 1. Proton (δP ), neutron (δN ) and total (δP + δN ) shell corrections for even–even spherical nuclei.

for spin–orbit and Coulomb interactions [2–4, 11,
16]. We employed a “universal” set of parameters of
the Woods–Saxon potential [16]. This set makes it
possible to describe well the spectra of single-particle

levels in light, medium-mass, heavy, and superheavy
spherical and deformed nuclei. Also, it was success-
fully used to calculate various properties of nuclei [14,
16, 17]. The residual pairing interaction of nucleons
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was taken into account in the Lipkin–Nogami ap-
proximation [13, 18] , the coupling constant being
set to rmic = 3.30 fm [13]. In order to calculate shell
corrections, we employed a basis formed by oscillator
wave functions for the lowest 35 shells of an axially
deformed harmonic oscillator and took into account
the lowest 2330 single-particle levels. The degree of
the correcting polynomial was chosen to be six. This
choice is conventional in calculating shell corrections
for medium-mass, heavy, and superheavy nuclei [11].
The energies of single-particle levels of nucleons were
calculated with the aid of the WSBETA code [16],
which was refined in order to take into account greater
numbers of shells and levels.

From the data in Fig. 1, it follows that the pro-
ton shell corrections have deep local minima at Z =
82, 114, and 164 and that the neutron shell cor-
rections have deep local minima at N = 126, 184,
and 228. It should be noted that Z = 82, 114, and
164 and N = 126, 184, and 228 are or are assumed
to be magic numbers [4]. For example, the empir-
ically known magic numbers Z = 82 and N = 126
correspond to the doubly magic spherical nucleus
208Pb126. The values that we found for the shell cor-
rections in the doubly magic nuclei 208Pb126 and
298114184 are in good agreement with their counter-
parts calculated in [13, 14]. Thus, our calculations
reproduce known results and make it possible to per-
form an extrapolation to the region of heavier nuclei.

The proton shell corrections have three deep local
minima in the region 164 < Z ≤ 400 (Fig. 1). There-
fore, Z = 210, 274, and 354 are the magic numbers of
protons in this region. Analyzing deep local minima
in the dependence of the neutron shell corrections on
the number of neutrons in Fig. 1 in the range 228 <
N ≤ 820, we can conclude that N = 308, 406, 524,
644, and 772 are the magic numbers of neutrons in
this region.

ALPHA-DECAY HALF-LIVES

Among nuclei for which we have calculated shell
corrections and which are close to the beta-stability
line described by Green’s formula, the 208Pb126,
298114184, 472164308, 616210406, and 798274524 nuclei
are doubly magic. In Fig. 1, the total shell correction
δP + δN has deep local minima in the vicinities of
these doubly magic nuclei. However, the heavier
doubly magic nuclei 998354644 and 1126354772 are
quite far off the beta-stability line described by
Green’s formula. For example, the 998354644 nucleus
is neutron-deficient, while the 1126354772 nucleus is
neutron-rich.

Alpha decay and fission are the main modes of de-
cay of doubly magic beta-stable heavy nuclei. Let us

estimate the alpha-decay half-lives and fission bar-
riers for the super- and ultraheavy nuclei 298114184,
472164308, 616210406, and 798274524.

The alpha-decay half-lives for these nuclei will be
found with the aid of the phenomenological Viola–
Seaborg formula [19], which relates the alpha-decay
half-life to the energy of alpha particles and the charge
of the primary nucleus. For the constants of the phe-
nomenological Viola–Seaborg formula, the authors
of [20] found values that made it possible to repro-
duce faithfully the experimental half-lives of 58 nuclei
heavier than 208Pb126. Knowing the total shell cor-
rections calculated here and the macroscopic binding
energies of nuclei as calculated by means of the mass
formula from [13], we determine the energies of alpha
particles (in MeV) emitted by the aforementioned
super- and ultraheavy nuclei. We have

Q(298114184) ≈ 9.4, Q(472164308) ≈ 13.1,

Q(616210406) ≈ 20.9, Q(798274524) ≈ 35.0.

After that, we determine the half-lives with respect
to the alpha decay of these nuclei with the aid of the
modified Viola–Seaborg formula [20]. The results are
(in s)

T1/2(
298114184) ≈ 1.1 × 102,

T1/2(
472164308) ≈ 2.3 × 104,

T1/2(
616210406) ≈ 4.2 × 10−6,

T1/2(
798274524) ≈ 3 × 10−21.

The half-lives of the first three doubly magic nuclei
with respect to alpha decay are quite long and can
readily be measured. The results that we obtained
for the energy of alpha particles from the 298114184

nucleus and for its alpha-decay half-life are in good
agreement with the results reported in [14].

Let us estimate fission barriers in doubly magic
ultraheavy nuclei. In order to do this, we calculate the
deformation energy of nuclei that is associated with
the change in their shape. For very heavy nuclei, the
fission barrier can be roughly estimated by taking into
account only variations in the quadrupole deformation
β2 of the nuclear surface, since the quantity β2 is
small at the barrier, with the result that deformations
of higher multipole orders have a weaker effect on the
barrier shape. Figure 2 shows the deformation energy
as a function of β2 for the super- and ultraheavy
doubly magic nuclei 298114184, 472164308, 616210406,
and 798274524. In calculating nuclear deformation en-
ergies, we took into account variations in the liquid-
drop and shell energies. The liquid-drop energy was
found in the approximation where nuclear interaction
is represented as the sum of the Yukawa and expo-
nential terms [21].
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Fig. 2. Deformation energy for the super- and ultraheavy doubly magic nuclei (solid curve) 298114184, (dashed curve)
472164308 , (dotted curve) 616210406 , and (dash-dotted curve) 798274524 .

From the data in Fig. 2, it follows that the fission
barrier in the 298114184 nucleus has a two-humped
shape. The identical fission-barrier shape was ob-
tained in [14] for the 298114184 nucleus. The inner-
and outer-barrier heights determined from the da-
ta in Fig. 2 are larger than their counterparts cal-
culated in [14], this being due to the fact that the
multipole surface deformations β2, β3, β4, . . . , β8

were taken into account in [14]. However, the inner-
fission-barrier heights determined from Fig. 2 and
in [14] are rather close, because, at small values of β2,
the effect of deformations of higher multipole orders
on the barrier height is weak. This makes it possible
to estimate the shape and the height of fission barriers
in ultraheavy doubly magic nuclei.

From Fig. 2, one can see that the ultraheavy dou-
bly magic nuclei 472164308, 616210406, and 798274524

have rather high but narrow one-humped fission bar-
riers. With increasing nuclear charge, the fission bar-
rier becomes narrower and occurs at smaller values of
β2. An increase in the barrier height with increasing
mass number in these doubly magic nuclei is due to
an increase in the amplitude of the shell correction
(see Fig. 1).

The fission half-life of the 298114184 nucleus is
about 1010 times longer than its alpha-decay half-
life [14]. The lifetimes of the 114 ≤ Z ≤ 120 neigh-
boring nuclei are also determined by their alpha-
decay periods [14, 17]. Similarly, the lifetimes of the
472164308, 616210406, and 798274524 nuclei are related
to their alpha-decay half-lives, since the fission bar-
riers in these nuclei are rather high. As was indi-
cated above, the half-lives of the doubly magic nuclei

472164308 and 616210406 could therefore readily be
measured if they were formed.

The nucleus involving the magic number Z = 164
of protons can be formed, for example, in the fusion
of two lead nuclei, whereas the nucleus involving the
magic number N = 308 of neutrons can be generated
in the fusion of two 252Cf154 nuclei. However, nuclei
arising in these reactions are rather far off the beta-
stability line. Ultraheavy doubly magic nuclei can be
produced in a collision of two heavy neutron-rich
nuclei that is accompanied by the absorption of many
neutrons.

DISCUSSION OF THE RESULTS
AND CONCLUSION

Recently, there appeared the article of Zhang
et al. [22], who studied magic numbers for 100 ≤ Z ≤
140 nuclei within the relativistic continuum Hartree–
Bogolyubov approximation, employing various ver-
sions of microscopic forces. Various nuclear shapes
were also taken into account in that article. It is
well known that the inclusion of nuclear deformations
leads to the emergence of additional local minima in
the dependence of shell corrections on the number
of nucleons [9–11, 14]. These minima, which are
associated with the filling of shells in deformed nuclei,
correspond to “quasimagic” numbers. It should be
noted that deformed nuclei having filled shells—that
is, quasimagic numbers of nucleons—also possess
enhanced stability and other properties inherent in
spherical beta-stable nuclei involving magic numbers
of nucleons. However, the amplitude of magicity
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effects in deformed nuclei is less than that in spher-
ical nuclei. In the region 100 ≤ Z ≤ 140, Zhang
et al. [22] found a greater number of magic num-
bers than the present author and the authors of [4,
12]. Some of the magic numbers found in [22] are
quasimagic. However, the magic numbers Z = 114,
N = 184, and N = 228 for 100 ≤ Z ≤ 140 nuclei
were found here and in [4, 22] as well.

The shell corrections for 40 ≤ Z ≤ 200, 40 ≤ N ≤
420 nuclei were calculated in [12] in the Hartree–
Fock approximation with various versions of Skyrme
forces and on the basis of the relativistic mean-field
model. Within various versions of the calculations,
magic numbers in the interval Z ≈ 114–126, an in-
terval around Z ≈ 164, the interval N ≈ 172–184,
and an interval around N ≈ 308 were found in that
study. It is worth noting that, in the figures presented
in [12], deep minima in the shell corrections are seen
in the regions close to N ≈ 228 and N ≈ 406; unfor-
tunately these minima are not discussed there.

Because of the Coulomb repulsion of protons, a
region depleted in nucleons can arise at the center
of super- and ultraheavy nuclei [12, 23]. This effect
was taken into account in [12]. However, the doubly
magic nucleus 472164308 found here also proved to
be doubly magic in the calculations performed in [12]
by using some parametrizations of Skyrme forces.
The Coulomb repulsion of protons at the center of
a nucleus could affect the values of the magic num-
bers for heavier nuclei, but a detailed investigation of
this effect would require substantially changing the
parametrization of the nucleon-mean-field potential.
It should be noted that a parametrization that would
take into account a decrease in the density at the
center of a nucleus has not yet been investigated.
Therefore, the effect of the Coulomb repulsion of pro-
tons at the center of super- and ultraheavy nuclei was
not considered in the present study.

In [12, 22], it was indicated that the values of
magic numbers in super- and ultraheavy nuclear re-
gions depend both on the choice of model and on the
choice of parameters of forces in microscopic calcu-
lations. Therefore, it would be of interest to perform
investigations similar to those in [12, 22] for heavier
nuclei and to compare the results of such investiga-
tion with the results obtained here.

By studying shell corrections, we have determined
the proton magic numbers Z = 114, 164, 210, 274,
and 354 and the neutron magic numbers N = 184,
228, 308, 406, 524, 644, and 772 in super- and ul-
traheavy nuclear regions. Ultraheavy nuclei involving
magic numbers of protons and neutrons are expected
to be more stable and to possess higher binding en-
ergies than neighboring nuclei. The alpha-decay pe-
riods of some doubly magic ultraheavy nuclei and

fission barriers in them are rather large; therefore,
searches for such nuclei are of great interest.
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