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1. INTRODUCTION

Advances in experimental investigations recently
performed in various laboratories for superheavy nu-
clei [1–9] have given impetus to theoretically study-
ing various features of superheavy nuclei and mecha-
nisms of their production. The problem of proton and
neutron magic numbers in the region of superheavy
nuclei is of crucial importance. Magic numbers are
associated with the filling of nuclear shells; therefore,
nuclei featuring magic numbers of nucleons are more
stable than their neighbors. A doubly magic super-
heavy nucleus may have a long lifetime. A stability
island can be formed around such a nucleus. How-
ever, experimental data available at the present time
[1–11] cannot provide an answer to the question of
which numbers are magic for spherical nuclei in the
region of superheavy nuclei.

Different nuclear models predict different values of
magic numbers for spherical nuclei in the region of
superheavy nuclei. For example, parametrizations of
the nucleon mean field in the form of the Woods–
Saxon potential led to the values of Z = 114, 120
and N = 184 in [12] and to the values of Z = 114
and N = 184 in [13–16]. Microscopic self-consistent
calculations in the Hartree–Fock–Bogolyubov ap-
proximation with Gogny forces yielded Z = 114,
120, and 126 and N = 184, 164, and 228 [17].
For protons, the magic numbers found on the ba-
sis of self-consistent microscopic calculations in
the Hartree–Fock–Bogolyubov approximation with
Skyrme forces [18] depend on their parametrization
and appear to be Z = 120 and 124 for the SkM∗

parametrization; Z = 120 for the SkI1, SkI3, and
SkI4 parametrizations; Z = 124 and 126 for the SLy4
and SkP parametrizations; and Z = 126 for the SkO
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parametrization [19–22]. In the case of neutrons, all
of these parametrizations lead to the value of N =
184 [19–22]. Calculations on the basis of relativistic
mean-field models, which were considered in detail
in [19–22], yield the magic-number values of Z =
120 and N = 172 and 184, while the relativistic model
proposed in [23] leads to the magic-number values of
Z = 114 and 120 and N = 172, 184, and 258. The
values of Z = 106, 114, 120, 126, 132, and 138 and
N = 138, 164, 172, 184, 198, 216, 228, 238, 252,
258, and 274 were determined as the possible magic
numbers in performing a detailed analysis of relativis-
tic Hartree–Bogolyubov theory with allowance for a
continuum [24], eight versions being considered in
parametrizing forces. The semiempirical shell model
for nuclear masses that was developed in [25] leads to
the magic-number values of Z = 126 and N = 184 in
the region of superheavy nuclei.

Distinctions between theoretical predictions for
the proton and neutron magic numbers are quite
significant in the region of superheavy nuclei. There-
fore, the results obtained by experimentally deter-
mining magic numbers for spherical superheavy nu-
clei could reduce drastically the number of possible
models and parametrizations of the mean field or
nucleon–nucleon forces. This could improve signifi-
cantly the accuracy of our knowledge of the structure
of superheavy nuclei and the properties of nucleon–
nucleon interactions in nuclei. From the theoretical
point of view, however, it is necessary to clarify the
reasons behind so great a scatter in predictions for
magic numbers in going over from one model to an-
other and to find out which parameters in the central
or spin–orbit mean field generate variations in magic
numbers observed in different models for different
mean-field parametrizations.
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It is well known that the shell correction has a deep
local minimum in the vicinity of a magic number [12,
26]. Calculating shell corrections for spherical nuclei
containing various numbers of protons and neutrons,
one can therefore determine magic numbers from the
positions of deep local minima in the proton and
neutron shell corrections [12, 16, 20, 26]. It follows
that, by studying the dependence of shell corrections
on the variations in the parameters of the central or
spin–orbit mean field, one can find the dependence of
magic numbers on the features of the mean field. As
will be shown in the next section, the nucleon mean
fields differ significantly in different models.

Binding energies and fission barriers are important
features of superheavy nuclei. These quantities de-
pend on shell corrections [12, 14–16, 20, 26–29]. For
example, the fission barrier in a superheavy nucleus
is determined approximately by the shell correction in
the ground state [30]. By studying the dependence of
the shell correction on variations in the parameters of
the central or spin–orbit mean field, one can therefore
analyze the dependence of the binding energy and
fission barrier on these parameters and the accuracy
of our knowledge of these quantities.

This article is organized as follows. In Section 2,
we analyze mean-field potentials that are used in
various approximations. The dependence of shell cor-
rections and magic numbers on the parameters of
the mean-field potential is discussed in detail in Sec-
tion 3. Section 4 is devoted to analyzing the accuracy
in describing masses of superheavy nuclei within var-
ious approximations. The conclusions drawn from the
present study are given in Section 5.

2. COMPARISON OF NUCLEON MEAN
FIELDS IN VARIOUS MODELS

Shell corrections are associated with the deviation
of the density of single-particle levels in the vicinity
of the Fermi level from the average value of the level
density in a given nucleus [12, 26]. If this level density
is lower than the average value, the number of states
that the system can occupy at low excitations is small.
In this case, the shell correction is negative, with the
result that the nucleus being considered appears to be
more stable to perturbations than its neighbors fea-
turing a higher level density in the vicinity of the Fermi
level. It is well known from experimental data that the
level density in nuclei involving a magic number of
nucleons is lower than that in the neighboring nuclei
having a nonmagic number of nucleons [31].

Strutinsky found a relation between the shell cor-
rection to the binding energy of the nucleus and the
nonuniformity of the single-particle spectrum in the

vicinity of the Fermi level [26]. The energies of single-
particle levels are the eigenvalues Eν of the time-
independent Schrödinger equation,[

�
2

2m
∇ + V (r) − Eν

]
ψν(r) = 0, (1)

and are related to the nucleon-mean-field potential
V (r). Here, m is the nucleon mass and ψν(r) is the
wave function of the νth state. Since the energies Eν

depend on the potential V (r), the shell corrections
and, hence, the positions of deep local minima asso-
ciated with magic numbers depend on the form of the
mean field.

Figure 1 displays the radial dependences of the
proton and neutron potentials obtained within various
models for the spherical nucleus 298114. The number
of protons, Z = 114, and the number of neutrons,
N = 184, in this nucleus are magic in some models
(see Introduction). The mean field in the form of the
Woods–Saxon potential involving the universal set of
parameters from [27] is widely used to analyze various
features of heavy and superheavy elements. The
mean-field potentials obtained in the Hartree–Fock
approximation for extensively used parametriza-
tions of Skyrme forces (SkM∗ [32], SkP [33], and
SLy4 [34]) are shown in Fig. 1 along with the radial
dependence of the central mean field obtained by
folding the Yukawa potential and a stepwise density
distribution. This mean field is employed to calculate
the shell correction in the mass formulas [14, 28].

The effective nucleon mean-field potentials ob-
tained in the form of the Woods–Saxon poten-
tial involving the universal parameters from [27],
by means of folding the Yukawa potential and a
stepwise density distribution [14], and in the self-
consistent Hartree–Fock approximation with SkP
Skyrme forces are close to one another in the in-
terior of the nucleus, but they differ substantially at
its surface (see Fig. 1). The mean-field potentials
calculated in the Hartree–Fock approximation with
SkM∗ and SLy4 Skyrme forces are much deeper
than the remaining potentials. The Woods–Saxon
potential whose parameters are set to the values
from the universal set has the largest potential-well
radius among all of the potentials presented in Fig. 1,
the diffuseness-layer thickness for this potential also
being the largest. On the contrary, the mean-field
potential obtained by folding the Yukawa potential
and a stepwise density distribution has the smallest
potential-well radius and the smallest diffuseness-
layer thickness within the same set of potentials.
The radii and diffuseness parameters of the potentials
calculated in the Hartree–Fock approximation with
Skyrme forces take intermediate values between their
counterparts for the Woods–Saxon potential whose
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Fig. 1. Neutron and proton mean-field potentials for the 298114 nucleus within various models. The following notation is
used here: the label “universal” corresponds to the Woods–Saxon potential whose parameters were borrowed from [27]; the
symbols SLy4, SkP, and SkM∗ denote the effective nucleon potentials determined in the Hartree–Fock approximation for the
corresponding parametrizations of Skyrme forces; and MNMS stands for the mean-field potential from [14].

parameters are set to the values from the universal set
and the potential borrowed from [14]. The potentials
obtained in the Hartree–Fock approximation exhibit
fluctuations in the interior of the nucleus.

We note that the depth and diffuseness parame-
ter of the potentials obtained for the 208Pb nucleus
in the relativistic mean-field approximation [35] are
close to the corresponding values calculated in the
Hartree–Fock approximation with SkM∗ or SLy4
Skyrme forces. However, the potential well calculated
in the relativistic mean-field approximation is wider
than the potential wells obtained in the Hartree–Fock
approximation with Skyrme forces.

The spin–orbit components of the potentials ob-
tained within different models and approaches involv-

ing different versions of effective nucleon–nucleon
forces also differ significantly from one another.

Potentials used in different models obviously lead
to different values of shell corrections and different
values of magic numbers in the region of superheavy
nuclei (see Introduction). Shell corrections are small
in relation to the total binding energy of the nu-
cleus being considered, the latter being determined by
the corresponding liquid-drop energy. Nevertheless,
shell corrections affect considerably the accuracy in
describing nuclear masses [13–15, 29, 36]. For ex-
ample, currently used mass formulas [13–15, 25,
29, 37–39] yield a considerably smaller root-mean-
square error than the value of shell corrections.
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Ground-state shell corrections E
g.s
shell make a deci-

sive contribution to the fission barrier Bf = Bmacro +
Ebar

shell − E
g.s
shell ≈ Bmacro − E

g.s
shell ≈ −E

g.s
shell for super-

heavy nuclei lying along the beta-stability line since
the shell correction at the barrier usually satisfies the
condition Ebar

shell � E
g.s
shell, so that the macroscopic fis-

sion barrier Bmacro is smaller than E
g.s
shell [30]. There-

fore, the fission barriers calculated for superheavy
nuclei by using different potentials differ markedly [27,
40, 41]. We note that the experimental uncertainties
in the fission barriers for superheavy nuclei are about
1 to 2 МeV [42].

Below, we will investigate the dependence of
shell corrections on the variations in the parame-
ters (depth, radius, and diffuseness) of the central
and spin–orbit components of the Woods–Saxon
potential. For the input parameters of the mean-field
potential, we will employ values from the universal set
introduced in [27, 43].

3. VARIATIONS IN THE MEAN FIELD
AND SHELL CORRECTIONS

The central (V (r)) and the spin–orbit (Vso(r))
term in the spherical Woods–Saxon potential are
parametrized in the form

V (r) = −V0[1 ± κ(N − Z)/(N + Z)]
1 + exp[(r − r0A1/3)/a]

, (2)

Vso(r) = λ

(
�

2mc

)2

(3)

× V0 exp[(r − rsoA
1/3)/aso]

2raso{1 + exp[(r − rsoA1/3)/aso]}2
(l · s).

In the numerator on the right-hand side of (2), a plus
(minus) sign is taken for protons (neutrons); in (3), s
and l stand for, respectively, the spin and the orbital
nucleon operators, while A = N + Z, Z, and N are
the numbers of, respectively, nucleons, protons, and
neutrons in the nucleus being considered.

The universal set of V0, r0, a, λ, rso, aso, and κ
values from [27, 43] describes well the single-particle
levels in A ≥ 40 even nuclei. Also, this set is success-
fully used to determine various properties of super-
heavy nuclei [27]. For this reason, we take this set
as an input one in studying the effect of variations
in the mean field on shell corrections. The single-
particle energy levels, which are necessary for finding
shell corrections, were calculated with the aid of the
WSBETA code [43], which was modified to extend
it to the case of a large number of nucleons in nu-
clei [16]. Shell corrections for protons and neutrons
were calculated for 76 ≤ Z ≤ 140 even–even nuclei
in the vicinity of the stability line described by Green’s

formula [14, 16, 44]. We disregarded pairing forces
and assumed a spherical shape of nuclei.

Figure 2 illustrates changes in shell corrections
for protons and neutrons in response to variations in
the parameter V0. Specifically, these shell corrections
were calculated for the value of V0 from the universal
set and for the values of V0 ± 5 МeV. The shell cor-
rections for protons change insignificantly in the case
of such variations in the potential depth, the position
of deep minima at Z = 82 and 114, which correspond
to magic numbers, remaining unchanged. The shell
correction for protons exhibits shallow local minima
at Z = 120 and 138. In [12], where use was made of
a different set of mean-field parameters, the number
Z = 120 of protons was also indicated as a possible
magic number. Shell corrections for neutrons change
only slightly in the vicinity of the magic number N =
126, but they exhibit sizable variations around the
magic numbers N = 184 and 228. A variation in the
depth of the neutron potential leads to an additional
local minimum at N = 164. Further, a minimum at
N = 178 appears as the potential depth increases.
The behavior of the shell corrections for neutrons
changes more strongly around N = 228 than in the
vicinity of the magic number N = 184. Therefore,
a variation in the depth of the central part of the
mean-field potential does not affect shell corrections
or magic numbers of protons in the region of su-
perheavy nuclei; in the case of neutrons, changes in
the shell corrections and magic numbers are small
for superheavy nuclei. Insignificant changes in shell
corrections in response to an increase in V0 are due to
insignificant variations in the potential in the vicinity
of the Fermi level. It should be emphasized that, be-
cause of the sensitivity of the shell corrections to the
level density in the vicinity of the Fermi energy, they
must be sensitive to variations in the potential in this
region.

Variations in the parameter κ give rise to variations
in the depth V0 of the central part of the mean-field
potential. Since the V0 dependence of the shell correc-
tions was demonstrated in Fig. 2, we do not present
a figure that would illustrate the effect of the choice of
value for the parameter κ on the shell corrections.

Figures 3 and 4 display the shell corrections for
protons and neutrons at various values of the radius
r0 and the diffuseness parameter a. The parameter r0

determines the radius R = r0A
1/3 of the central part

of the potential for a nucleus that contains A nucle-
ons, while the parameter a controls the diffuseness-
layer thickness and the slope of the potential in the
vicinity of the nuclear boundary. The shell corrections
in question were calculated for the r0 and a values
recommended in the universal parametrization and
for the values of r0 ± 0.05 fm and a± 0.1 fm. The shell
corrections in the regions of actinides and superheavy
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Fig. 2. Shell corrections for neutrons and protons in heavy and superheavy spherical nuclei versus the number of (upper panel)
neutrons and (lower panel) protons for various values of the depth V0 of the central part of the nucleon mean-field potential.

nuclei change markedly in response to variations in
the parameters r0 and a (see Figs. 3, 4). The posi-
tion of deep minima also change significantly as the
parameters r0 and a become greater than the rec-
ommended values. In addition, there arise new local
minima and, hence, the proton magic numbers of

Z = 120 and 138 and the neutron magic numbers of
N = 164 and 178. Thus, variations in the parameters
r0 and a of the central part of the mean-field potential
affect substantially the magic numbers of protons and
neutrons in the region of superheavy nuclei. However,
these variations exert no effect on the magic numbers
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Fig. 3. Shell corrections for neutrons and protons in heavy and superheavy spherical nuclei versus the number of (upper panel)
neutrons and (lower panel) protons for various values of the radius r0 of the central part of the nucleon mean-field potential.

corresponding to the doubly magic nucleus of lead,
Z = 82 and N = 126 (see Figs. 3 and 4).

In Figs. 5–7, we present the shell corrections for
protons and neutrons at various values of the parame-
ters λ, rso, and aso of spin–orbit-interaction. The shell
corrections for neutrons and especially for protons

change in response to variations in the strength λ
and the radius rso of the spin–orbit component of the
mean field. The positions of the deep local minima in
the shell correction for protons also change markedly
in this case. Variations in λ and rso have virtually no
effect on the positions of the deep local minima in the
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neutrons and (lower panel) protons for various values of the diffuseness parameter a of the central part of the nucleon mean-field
potential.

shell corrections for neutrons and, hence, on magic
numbers. Variations in the diffuseness parameter aso

of spin–orbit interaction affect only slightly the shell
corrections both for protons and for neutrons.

Protons also interact with one another via the
electric field. In the case of a spherical nucleus, the
Coulomb potential of protons can be approximated by
the electric potential of a uniformly charged sphere of
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Fig. 5. Shell corrections for neutrons and protons in heavy and superheavy spherical nuclei versus the number of (upper panel)
neutrons and (lower panel) protons for various values of the amplitude λ of the spin–orbit term in the nucleon mean-field
potential.

radius Rc (for details, see [31, 43]). However, varia-
tions in Rc change only slightly the shell corrections
for protons and do not shift the positions of minima

in the shell corrections. Therefore, variations in the
radius Rc do not affect the magic numbers in the
region of heavy and superheavy nuclei.
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4. BINDING ENERGIES OF SUPERHEAVY
NUCLEI WITHIN VARIOUS MODELS

As follows from the calculations presented in the
preceding section, the magic numbers of protons and

neutrons in spherical nuclei depend greatly on the

parameters of the mean-field potential. Variations in

these parameters lead to variations in the shell cor-

rections; changes in the position of deep local minima;
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and the emergence of new minima and, hence, (new)
magic numbers. Magic numbers that appear ow-
ing to variations in the parameters of the mean-field

potential frequently coincide with their counterparts
obtained within different models and approximations.

The accuracy of the shell-correction method and,
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Binding and excitation energies (in МeV units) of nuclei produced in the reaction 58Fe + 208Pb = 266Hs = 265He + n at
the collision energy of 216 МeV (B and b are the absolute values of the binding energies of the 266Hs and 265Hs nuclei,
respectively; δ is the energy of neutron separation from the 266Hs nucleus; Q is the threshold energy for the formation of
the compound nucleus 266Hs; E∗ is the excitation energy of the compound nucleus 266Hs; and e is the maximum possible
excitation energy of the compound nucleus 265Hs)

B b δ Q E∗ e References

1941.286 1933.235 8.051 205.092 10.908 2.857 [47]

1941.52 1933.37 8.15 204.858 11.14 2.99 [14]

1940.13 1931.90 8.23 206.248 9.75 1.52 [28]

1940.702 1932.130 8.571 205.676 10.324 1.752 [29]

1941.602 1933.630 7.971 204.776 11.224 3.252 [48]

1941.492 1933.650 7.841 204.886 11.114 3.272 [27]

1925.983 1917.932 8.051 220.395 −4.395 −12.446 [37]а)

1934.486 1926.435 8.051 211.895 4.108 −3.943 [37]b)

1930.822 1922.771 8.051 215.556 0.444 −7.607 [37]c)

1944.46 1936.41 8.051 201.918 14.082 6.031 [49]

a) Results of the calculation with SkM∗ Skyrme forces.
b) Results of the calculation with SkP Skyrme forces.
c) Results of the calculation with SLy4 Skyrme forces.

hence, of resulting magic numbers, nuclear masses,
fission barriers, ground-state deformations, and other
features of nuclei depends greatly on the choice of
mean-field potentials and on their matching with
nucleon-density distributions [12, 45]. (We do not
discuss here the dependence of the accuracy in deter-
mining shell corrections on the parameter of averag-
ing over levels, the proximity of the Fermi level to the
continuous spectrum, and some other factors. These
issues were considered in detail elsewhere [12, 46].)
It follows that calculations in the Hartree–Fock or
the relativistic mean-field approximation are the most
accurate from the point of view of the self-consistency
of the nucleon mean field. Nevertheless, the masses
of nuclei are described more accurately in so-called
macroscopic–microscopic approximations [27, 36],
where the binding energy is represented as the sum of
the liquid-drop energy and the shell correction.

Let us now consider the synthesis reaction 58Fe +
208Pb = 265He + n, which was investigated experi-
mentally in [11]. In the c.m. frame, the minimum
collision energy at which this reaction occurs is about
216 МeV [10, 11, 30]. The table lists the binding
energies of the 266Hs and 265Hs nuclei, the energy
of neutron separation from the 266Hs nucleus, and
the excitation energies of the 266Hs and 265Hs nuclei

that are produced at the collision energy of 216 МeV.
The binding energies of the 266Hs nucleus were taken
from experimental data reported in [47] and results
of calculations performed in various theoretical ap-
proximations [14, 27–29, 37, 48, 49]. In calculating
the excitation energies of the 266Hs and 265Hs nuclei,
we relied on the experimental binding energies of the
58Fe and 208Pb nuclei [47]. Only the masses of even–
even nuclei were calculated in [37, 49]; therefore, the
experimental energy of neutron separation from the
266Hs nucleus [47] was used in the table to estimate
the mass of the 265Hs nucleus.

From the data in the table, one can see that the
values obtained for the binding energy of the 266Hs
nucleus on the basis of macroscopic–microscopic
models [14, 27–29] are close to its experimental
value from [47]. The binding-energy values calculated
in the Hartree–Fock–Bogolyubov approximation
with SkM∗, SkP, and SLy4 Skyrme forces [37] fall
substantially short of this experimental value [47].
As a result, the threshold energy for the formation
of the compound nucleus 266Hs proves to be less
than the energy at which the synthesis of 265Hs in the
reaction 58Fe + 208Pb = 265He + n was successfully
implemented in an experiment. A small value ob-
tained for the binding energy of the 266Hs nucleus in
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the calculations with SkM∗, SkP, and SLy4 Skyrme
forces leads to negative values of E∗ and e in the
table. We note that the MSk7 parametrization of
Skyrme forces, which was obtained from a fit to
nuclear masses, is free from this drawback, the
binding energies calculated with these forces in the
Hartree–Fock–Bardeen–Cooper–Schriefer approx-
imation satisfying experimental conditions.

Taking into account the energy dependence of
the ratio of the width with respect to neutron emis-
sion from the compound nucleus 266Hs to its fission
width [30], we can conclude that, for the reaction
58Fe + 208Pb = 266Hs = 265He + n at a collision en-
ergy of about 216 МeV to proceed successfully, the
excitation energy of the 266Hs nucleus must not be
smaller than 9 МeV. If use is made of SkM∗, SkP, and
SLy4 Skyrme forces, the binding energy of the 266Hs
nucleus is so small that experimental conditions can-
not be met at a collision energy of about 216 МeV.
This indicates that the liquid-drop part of the en-
ergy is described inadequately in the Hartree–Fock
approximation with SkM∗, SkP, and SLy4 Skyrme
forces. Shell-correction variations caused by changes
in the mean field are insufficient for obtaining so
large a variation in the binding energy of the 266Hs
nucleus in the case of the above forces (this would
lead to a value of 9 to 10 МeV for the excitation
energy of the 266Hs nucleus at a collision energy of
about 216 МeV). We note that the shell corrections
Eshell p + Eshell n in the ground states of the 266Hs and
265Hs nuclei are, respectively, −6 and −5.2 МeV [27].

Since microscopic calculations employing some
parametrizations of Skyrme forces lead to an unsatis-
factory description of binding energies for superheavy
nuclei, there is a doubt as to whether the predictions
of the respective models for magic numbers are cor-
rect.

Calculations in the Hartree–Fock approximation
with Skyrme forces satisfactorily describe binding
energies, nucleon-density distributions, and some
other features of medium-mass and heavy nuclei
in the ground and excited states [18]. The values
obtained for the radii of the nucleon mean-field poten-
tials in self-consistent calculations involving various
parametrizations of Skyrme forces are quite realistic
for medium-mass, heavy, and possibly superheavy
nuclei. As was indicated previously, the proton and
especially neutron mean fields in the form of the
Woods–Saxon potential whose parameters are set
to the values from the universal set have the largest
well radii among the potentials presented in Fig. 1.
On the contrary, the mean field determined in the
approximation where the Yukawa potential is folded
with a stepwise density distribution has the smallest

radius. Therefore, the form of these empirical poten-
tials, which are used to calculate shell corrections in
the macroscopic–microscopic models, agrees poorly
with the nucleon-density distribution obtained within
self-consistent microscopic approaches. Thus, the
inconsistency of the form of potential with the den-
sity distribution reduces the predictive power of the
shell-correction method and impairs the accuracy
in describing nuclear masses and fission barriers. If
use is made of macroscopic–microscopic models, the
values of shell corrections and regularities in their
behavior in response to variations in both the number
of nucleons and the deformations of the nuclear shape
can therefore appear to be unrealistic. We note that,
in the model proposed in [27], a very high accuracy in
describing the masses of heavy and superheavy nuclei
is achieved by fitting the parameters of the liquid-drop
energy and by restricting the interval in which nuclear
masses are described.

5. CONCLUSIONS

The main conclusions of the present study can be
briefly formulated as follows:

In the region around Z = 82 and N = 126, vari-
ations in the parameters of the mean-field potential
affect only slightly the values of shell corrections.
The position of the deep local minimum in the shell
corrections at Z = 82 and N = 126 is stable against
variations in the parameters of the mean-field poten-
tial.

In the region of superheavy nuclei, variations in
the parameters of the mean-field potential change
substantially the shell corrections and the positions of
their local minima, this leading to a change in magic
numbers. The effect of variations in the mean field
on the shell corrections and magic numbers becomes
stronger with increasing Z and N .

Variations in shell corrections in response to em-
ploying different nucleon mean-field potentials lead
to different values of the magic numbers and to the
dependence of nuclear masses and fission barriers on
the number of nucleons in superheavy nuclei.

Shell corrections are the most sensitive to vari-
ations in the parameters r0, a, λ, and rso [see for-
mulas (2) and (3)], since these variations have the
strongest effect on the mean-field potential in the
vicinity of the Fermi level.

For heavy and superheavy nuclei, shell corrections
for protons are usually more sensitive to variations in
the parameters of the mean-field potential than shell
corrections for neutrons.

In the region of superheavy nuclei, magic numbers
obtained within various self-consistent microscopic
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models can be reproduced by using the Woods–
Saxon potential whose parameters are chosen appro-
priately.

In the region of superheavy nuclei, the calcula-
tions in the Hartree–Fock approximation with SkM∗,
SkP, and SLy4 Skyrme forces lead to underestimated
values for the liquid-drop component of the binding
energy.

A high sensitivity of the structure and binding en-
ergies of superheavy nuclei to the parametrization of
nuclear forces can be used to refine parametrizations
of effective nucleon–nucleon forces.

In order to obtain a more reliable description
of binding energies and shell corrections within
macroscopic–microscopic models, it is necessary
to match the nucleon-density distribution and the
potential used.

ACKNOWLEDGMENTS

I am grateful to A. Sobiczewski and Z. Patyk
for enlightening discussions on the results of their
studies and on the WSBETA code. I am also grateful
to A.G. Magner for valuable comments.

REFERENCES
1. A. V. Yeremin et al., Yad. Fiz. 66, 1078 (2003) [Phys.

At. Nucl. 66, 1042 (2003)]; M. G. Itkis et al., Yad. Fiz.
66, 1154 (2003) [Phys. At. Nucl. 66, 1118 (2003)];
Yu. Ts. Oganessian, V. K. Utyonkov, and K. J. Moody,
Yad. Fiz. 64, 1427 (2002) [Phys. At. Nucl. 64, 1349
(2002)]; Yu. Ts. Oganessian et al., Nucl. Phys. A 734,
109 (2004); Phys. Rev. C 72, 034611 (2005).

2. S. Hofmann, Yad. Fiz. 66, 1056 (2003) [Phys. At.
Nucl. 66, 1020 (2003)]; S. Hofmann et al., in Pro-
ceedings of the Carpathian Summer School of
Physics, Mamaia, Romania, 2005.

3. K. Morita et al., J. Phys. Soc. Jpn., 73, 2593 (2004);
Nucl. Phys. A 734, 101 (2004).

4. H. Ikezoe et al., Eur. Phys. J. A 2, 379 (1998);
Y. Nagame et al., Yad. Fiz. 66, 1167 (2003) [Phys. At.
Nucl. 66, 1131 (2003)]; K. Nishio et al., Phys. Rev.
Lett. 93, 162701 (2004).

5. T. N. Ginter et al., Phys. Rev. C 67, 064609 (2003);
K. E. Gregorich et al., Phys. Rev. C 72, 014605
(2005).

6. P. Reiter et al., Phys. Rev. Lett. 95, 032501 (2005).
7. R.-D. Herzberg et al., Phys. Rev. C 65, 014303

(2002); V. A. Rubchenya et al., Yad. Fiz. 66, 1500
(2003) [Phys. At. Nucl. 66, 1454 (2003)].

8. J. S. Guo et al., J. Nucl. Radiochem. Sci. 3, 183
(2002); Z. G. Gan et al., Eur. Phys. J. A 10, 21 (2001);
20, 385 (2004).

9. S. Grevy et al., J. Nucl. Radiochem. Sci. 3, 9 (2002).

10. S. Hofmann, Rep. Prog. Phys. 61, 639 (1998);
S. Hofmann and G. Münzenberg, Rev. Mod. Phys.
72, 733 (2000); P. Armbruster, Acta Phys. Pol. B 34,
1825 (2003); M. Leino and F. P. Hessberger, Annu.
Rev. Nucl. Part. Sci. 54, 175 (2004); R.-D. Herzberg,
J. Phys. G 30, R123 (2004).

11. S. Hofmann et al., Z. Phys. A 350, 277 (1995).
12. M. Brack et al., Rev. Mod. Phys. 44, 320 (1972).
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