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Abstract

The semi-microscopic potential between heavy ions is evaluated for various colliding ions in the approach of frozen densities
in the framework of the extended Thomas–Fermi approximation withh̄2 correction terms in the kinetic energy density
functional. The proton and neutron densities of each ion are obtained in the Hartree–Fock–Bogoliubov approximation with
SkM∗ parameter set of the Skyrme force. An expression for the ion–ion potential well fits the semi-microscopic potentials in
the wide range of both colliding ions and distances between them. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and summary

Knowledge of the ion–ion interaction potential is a
key ingredient in the analysis of nuclear reactions. By
using the potential between nuclei we can estimate the
cross sections of different nuclear reactions [1–3]. The
cross sections of elastic, inelastic and fusion reactions
between heavy ions are strongly dependent on the
nucleus–nucleus interaction potential [1–3].

The ion–ion interaction potential related to the
Coulomb repulsion force and the nuclear attraction
force has, as a rule, the barrier and the capture poten-
tial well near a touching point. The Coulomb part of
the ion–ion potential is well-known. In contrast, the
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nuclear part of the nucleus–nucleus potential is less
defined. There are many different approaches to the
nuclear part of the interaction potential [1–8]. Unfortu-
nately, barriers evaluated within different approaches
for the same colliding system differ considerably,
especially when both nuclei are very heavy or one nu-
cleus is very heavy and another is light. The uncer-
tainty of the interaction potential between heavy ions
near the touching point gives rise to a variety of pro-
posed nuclear reaction mechanisms. So, there is a need
to reduce the uncertainty of the interaction potential
around the touching point.

Below we evaluate the nuclear part of interac-
tion potential between heavy nuclei in the semi-
microscopic frozen density approximation due to a
short reaction time. The frozen (or sudden) approxi-
mation is good for evaluation of the ion–ion potential
near the touching point at collision energies above the
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barrier height. The shape of each ion cannot apprecia-
bly change and the energy of relative motion cannot
be strongly transferred to another degrees of freedom
during the short reaction time.

The interaction energy between ions is obtained
with the help of a local energy density functional.
The extended Thomas–Fermi (ETF) approximation
with h̄2 correction terms is used for the evalua-
tion of the kinetic energy density functional [9]. The
Skyrme and Coulomb energy density functionals are
employed for the calculation of the potential energy.
These energy density functionals depend on the pro-
ton and neutron densities. These densities are ob-
tained in the microscopic Hartree–Fock–Bogoliubov
approximation with the Skyrme force. Our approxi-
mation is semi-microscopic because we use the mi-
croscopic density distributions and the ETF approx-
imation for the calculation of the interaction en-
ergy of ions. Note that the binding energies of nu-
clei evaluated in the ETF approximation with the
help of microscopic density distributions well agree
with those obtained in the fully microscopic Hartree–
Fock–Bogoliubov model [8]. Therefore, our semi-
microscopic method for evaluation of the interac-
tion potential between various nuclei is quite accu-
rate.

Unfortunately, the semi-microscopic approach is
not so convenient for any practical application because
one needs to evaluate the microscopic Hartree–Fock–
Bogoliubov densities for both nuclei. Therefore, we
choose 119 spherical or near spherical nuclei along
the β-stability line from 16O to 212Po and perform
calculations of the interaction potentials between all
possible nucleus–nucleus combinations in the semi-
microscopic approximation. We evaluate potential for
any nucleus–nucleus combinations at 15 distances be-
tween ions around the touching point. By using data-
base for 7140 ion–ion potentials at 15 points each,
we find an analytical expression for the ion–ion po-
tential. The potentials obtained by means of the an-
alytical expression well agree with semi-microscopic
one.

In Section 2 of the Letter we briefly discuss our
semi-microscopic approach for the ion–ion interaction
potential. The simple expression for the nuclear poten-
tial between heavy ions is presented in Section 3. The
discussion of the results and conclusion are given in
Section 4.

2. Semi-microscopic potential between heavy ions

The interaction energy between spherical nuclei in
the approximation of frozen densities is determined as
the difference between binding energyE12(R) at finite
distance between ionsR and binding energiesE1,2 of
each ion at infinite distance

(1)V (R) = E12(R) − E1 −E2,

where

(2)

E12(R) =
∫

ε
[
ρ1p(r) + ρ2p(R, r),

ρ1n(r) + ρ2n(R, r)
]
dr,

E1 =
∫

ε
[
ρ1p(r), ρ1n(r)

]
dr,

(3)E2 =
∫

ε
[
ρ2p(r), ρ2n(r)

]
dr.

Hereε[ρp(r), ρn(r)] is the energy density functional,
ρ1,2p(r) andρ1,2n(r) are the proton and neutron den-
sity distributions in two interacting spherical nuclei,
respectively.

The energy density functional can be presented as
a sum of the kineticτ and potentialν parts

(4)ε
[
ρp(r), ρn(r)

]= h̄2

2m

[
τp(r) + τn(r)

]+ ν(r),

wherem is the nucleon mass. Expressions for proton
τp and neutronτn kinetic energy density functionals,
which take into account̄h2 correction terms are given
in Ref. [9]

τp(n)(r) = 3

5

(
3π2)2/3

ρ
5/3
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6
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− 1

12
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(∇fp(n)
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)2

(5)

+ ρp(n)

2

(
2m

h̄2

W0

2

2∇ρp(n) + ∇ρn(p)

fp(n)

)2

,

where

(6)fp(n)(r) = 1+ 2m

h̄2

(
3t1 + 5t2

16
+ t2x2

4

)
ρp(n)(r).
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The potential energy density functional splits into
nuclearνSkyrme(r) and CoulombνCoul(r) parts

(7)ν(r) = νSkyrme(r) + νCoul(r).

The nuclear part is described by the Skyrme energy
density functional [9]

νSkyrme(r)

= t0

2

[(
1+ 1

2x0
)
ρ2 − (

x0 + 1
2

)(
ρ2
p + ρ2

n

)]
+ 1

12t3ρ
α
[(

1+ 1
2x3

)
ρ2 − (

x3 + 1
2

)(
ρ2
p + ρ2

n

)]
+ 1

4

[
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(
1+ 1

2x1
)+ t2

(
1+ 1

2x2
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τρ

+ 1
4

[
t2
(
x2 + 1

2

)− t1
(
x1 + 1

2
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(τpρp + τnρn)

+ 1
16
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3t1
(
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(
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− 1
16
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(8)

+ (∇ρp)
2 − W2

0

4

2m

h̄2

[
ρp

fp

(2∇ρp + ∇ρn)
2

+ ρn

fn

(2∇ρn + ∇ρp)
2
]
.

Here and in Eqs. (5), (6),t0, t1, t2, x0, x1, x2, α and
W0 are parameters of the Skyrme forces,ρ = ρp +ρn,
τ = τp + τn. The last term in Eq. (8) is the spin–orbit
interaction obtained in̄h2 approximation, see Ref. [9]
for details.

The Coulomb energy density functional in Eq. (7)
is the sum of direct and exchange terms [9]

νCoul(r) = e2

2
ρp(r)

∫
ρp(r′)
|r − r′| dr′

(9)− 3e2

4

(
3

π

)1/3(
ρp(r)

)4/3
.

Thus, if we know the proton and neutron density
distributions in both nuclei, as well as the gradients
and the Laplacians of these distributions, we can
calculate the interaction potential between ions by
means of the ETF approximation. The nuclear part
of interaction potential is evaluated by neglecting the
Coulomb interaction between ions at finite distances.

We evaluate the proton and neutron densities in the
microscopic Hartree–Fock–Bogoliubov model with

SkM∗ parameter set of the Skyrme force [10]. The
pairing is evaluated in Lipkin–Nogami BCS approx-
imation [11]. The monopole pairing constants for pro-
tons and neutrons are choosed in the formGp(n) =
15/(11+ Z(N)), whereZ andN are the number of
protons and neutrons in nuclei, respectively. The value
of the paring constant for neutrons is the same as
in [12], while the proton pairing constant slightly devi-
ates from that evaluated in [12]. We numerically take
gradients and Laplacians of density distributions. Note
that the semi-microscopic potentials evaluated for dif-
ferent sets of the Skyrme force well agree with each
other at distances larger than and near the touching
distance [8]. Some sets of the Skyrme force (for ex-
ample, Sk3) may give essentially different results at
distances less than the touching one, when the densi-
ties of ions are strongly overlapped [8]. The difference
between semi-microscopic ion–ion potentials, evalu-
ated with different sets of the Skyrme force at small
distances between ions, is related to different values of
incompressibility for these sets. We choose SkM∗ pa-
rameter set of the Skyrme force [10] because the corre-
sponding incompressibility is close to the experimen-
tal one [9,13] and this parameter set is successfully
applied to the description of various nuclear structure
phenomena.

3. Analytical expression for potential between
heavy ions

We choose 119 spherical or near spherical even-
even nuclei around theβ-stability line from 16O
to 212Po and perform calculations of the nuclear
part of interaction potentials in the semi-microscopic
approximation between all possible nucleus–nucleus
combinations. Therefore, we evaluate 7140 ion–ion
potentials at 15 distances around the touching point.
By using this database we find expression for the
nuclear part of ion–ion interaction potential in the
form

V (R) = −1.989843Cf(R − R12 − 2.65)

(10)

× [
1+ 0.003525139(A1/A2 + A2/A1)

3/2

− 0.4113263(I1 + I2)
]
,

where R is the distance between mass centers of
colliding nuclei,C = R1R2/R12, Ri is the effective
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nuclear radius,R12 = R1 +R2,

f (s) =
{

1− s2
[
0.05410106Cexp

(
− s

1.760580

)

− 0.5395420(I1 + I2)exp

(
− s

2.424408

)]}

(11)× exp

( −s

0.7881663

)
, for s � 0,

f (s) = 1− s

0.7881663
+ 1.229218s2 − 0.2234277s3

− 0.1038769s4

− C
(
0.1844935s2 + 0.07570101s3)

+ (I1 + I2)
(
0.04470645s2 + 0.03346870s3),

(12)for − 5.65� s � 0,

Ai is the number of nucleon in nucleusi (i = 1,2),
Ii = (Ni − Zi)/Ai , Zi andNi are numbers of protons
and neutrons in nucleusi. The effective nuclear radius
is given by

Ri = Rip

(
1− 3.413817/R2

1p

)
(13)+ 1.284589

(
Ii − 0.4Ai/(Ai + 200)

)
,

where the proton radius is determined as in [14]

(14)Rip = 1.24A1/3
i (1+ 1.646/Ai − 0.191Ii).

The last term in (13) takes into account deviation of the
nuclear radius from the proton radius when the neutron
number in nucleus deviates from theβ-stability value
for given A. The line ofβ-stability is described by
Green’s approximationI = (N −Z)/A = 0.4A/(A+
200) [15].

Each nucleus–nucleus potential is evaluated at the
15 distances between ions, which are determinated as

Dk = R1p + R2p + 0.5(k − 7) fm, where

(15)k = 1,2,3, . . . ,15.

The parameters and the form of Eqs. (10)–(13) are
found by the minimization of

(16)
7140∑
n=1

15∑
k=1

(Vn(Dk) − V s−m
n (Dk))

2

−V s−m
n (Dk)

,

where V s−m
n (Dk) is the potential evaluated in the

semi-microscopic approximation andVn(Dk) is the
potential described by the analytical approximation.
For a more accurate description of the potential at

Table 1
Dependence of rms errorδ(Dk) (13) on distanceDk (11) between
ions

k 1 2 3 4 5
δ(Dk), MeV 2.15 1.63 1.01 0.90 0.80

k 6 7 8 9 10
δ(Dk), MeV 0.64 0.58 0.43 0.27 0.18

k 11 12 13 14 15
δ(Dk), MeV 0.10 0.060 0.041 0.028 0.020

large distances, where the potential is rather small,
we use the weight−1/V s−m

n (Dk) in (16). (Please,
remember thatV s−m

n (Dk) is negative.)
The root mean square error (rms error)

(17)δ(Dk) =
(

1

7140

7140∑
n=1

(
Vn(Dk) − V s−m

n (Dk)
)2)1/2

is presented in Table 1. The barrier formed by Coulomb
and nuclear interactions between ions takes place, as a
rule, at distances betweenD9 andD13. So, by using
the analytical expression for the potential we may es-
timate the barrier with rms error smaller then 0.3 MeV,
see Table 1.

The main goal of this study is to present a sim-
ple expression for the nuclear interaction potential be-
tween ions at distances around the touching point,
which is suitable for determination of the barrier and
the shape of potential well (pocket). The rms error is
small for such distances, see Table 1. Note that the
rms error is relatively large (compared to the poten-
tial value) for a large distances between ions likeD15,
but the nuclear part of ion–ion potential is rather small
for such distances.

4. Discussion and conclusion

As, an example, in Fig. 1 we compare the nuclear
part of the ion–ion potential near touching point ob-
tained in our approach with other potentials available
in Refs. [1,4–7] for all different nucleus–nucleus com-
binations of16O, 90Zr and208Pb.

Semi-microscopic potentials are well fitted by our
analytical expression, see Fig. 1. However, for some
cases the agreement at small distances is worse then
at the larger ones. This tendency also reveals itself
in Table 1. In Fig. 1 we see that Krappe–Nix–Sierk
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Fig. 1. The nuclear part of the ion–ion potential for reactions16O+ 16O, 16O+ 90Zr, 16O+ 208Pb, 90Zr+ 90Zr, 90Zr+ 208Pb and
208Pb+ 208Pb. The potential obtained in direct semi-microscopic calculations is marked by dots, the potential obtained by using analytical
expressions (10)–(14) is shown by the solid line. The touching point distance of two ions (D7) is marked by the vertical dotted line on each
figure.

[5] potential is the closest to that in our approach.
Unfortunately, this potential is introduced only up
to the touching distance of ions [5]. The proximity-
2000 potential was also originally derived up to the
touching distance [6], but in the Fig. 1 we slightly
extrapolate it to smaller distances by using analyt-

ical expression for proximity-2000 potential given
in [6].

In Fig. 1 we see that the proximity-1977 poten-
tial [4] is the most attractive at large distances. The
Bass-1974 (Eqs. (7.37)–(7.39) in Ref. [1]) poten-
tial is the weakest potential at large distances for
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(a) (b)

Fig. 2. The difference between the “empirical fusion barrier” and the barrier evaluated with expressions (10)–(14).

medium and heavy systems. Due to differentA- and
Z-dependencies, the proximity-1977 [4], proximity-
2000 [6], Krappe–Nix–Sierk [5], Bass-1974 [1], Bass-
1980 (Eqs. (7.50), (7.51) in Ref. [1]), Winther [7]
and our analytical potentials have different mutual
positions for different systems in Fig. 1. For exam-
ple, we see that Bass-1980 potential is close to semi-
microscopic potential for light systems, while the
Bass-1980 potential becomes more attractive than the
semi-microscopic one for heavier systems. Proximity-
1977 [4], proximity-2000 [6], Bass-1980 [1] and
Winther [7] potentials are overattractive for very heavy
colliding systems. Due to this, the barriers evalu-
ated with these potentials are too low as compared
to our predictions. The knowledge of the interac-
tion barrier is very important for the correct under-
standing of the superheavy element production mech-
anism [6,8,16,17] and subbarrier fusion of medium-
weight nuclei [18]. (Note that exact calculation of the
Coulomb interaction energy between very heavy nu-
clei is necessary for the accurate evaluation of the in-
teraction potential around touching points because the
Coulomb energy evaluated in the approximation of

two point-like ions results in considerably less of ac-
curacy in such cases.)

The “empirical fusion barrier”Bempbetween heavy
ions is extracted by means of a special analysis of the
experimental data for subbarrier fusion reactions in
Ref. [19]. The difference between “empirical fusion
barrier” and barrier evaluated by using expressions
(10)–(14)Btheor is presented in Fig. 2. The barriers
Btheor well agree with “empirical fusion barriers”,
see Fig. 2. Note that “empirical fusion barrier” is
determined with the accuracy1 ±2% for Z1Z2 � 800
and±3–8% forZ1Z2 � 800 [19].

The distribution of deviationsBemp–Btheor is al-
most symmetric with respect to the lineBemp–Btheor
= 0, see Fig. 2. This also suggests the reliability of

1 The accuracy of the “empirical fusion barrier” is worse then
that given in [19], because the model used for description of
experimental fusion cross section in Ref. [19] is oversimplified. It is
well-known that the coupling to both low-energy surface vibrations
and nucleon transfer between ions strongly enhances the subbarrier
fusion cross section [16–18,20]. These effects are not considered in
the “empirical fusion barrier” evaluation in Ref. [19].
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A- andZ-dependencies of our approach. In contrast
similar distributions for the proximity-1977,proximity-
2000 and Krappe–Nix–Sierk potentials have no sym-
metry with respect to the lineBemp–Btheor = 0, see
Fig. 5 in Ref. [19] and Figs. 1 and 2 in Ref. [6].

The potential described by Eqs. (10)–(14) well
agrees with the semi-microscopic the one for all sys-
tems in Fig. 1. So, the results presented in Table 1
and in Figs. 1 and 2 suggest that theA- and Z-
dependencies of the nuclear ion–ion potential de-
scribed by Eqs. (10)–(14) are the most realistic.
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