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Nuclear reactions in hot stellar matter and nuclear surface deformations
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Cross sections for capture reactions of charged particles in hot stellar matter turn out be increased by the
quadrupole surface oscillations when the corresponding phonon energies are of the order of the star temperature.
This increase is studied in a model that combines barrier distribution induced by surface oscillations and tunneling.
The capture of charged particles by nuclei with well-deformed ground states is enhanced in stellar matter. It is
found that the influence of quadrupole surface deformation on the nuclear reactions in stars grows when mass
and proton numbers in colliding nuclei increase.
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I. INTRODUCTION

Various nuclear reactions take place in the stars [1–16]. The
cross sections of nuclear reactions determine diverse properties
of the stars [1–3,5,14] and the nucleosynthesis of elements
in stellar matter [1–13]. Nuclear reactions occur at very high
temperatures during the burning of massive stars, in supernova
explosions, or in the crust of neutron stars [1,3–5]. A typical
temperature of the silicon burning of massive stars is close to
3.5 × 109K ≈ 0.3 MeV [5]. The star matter at temperatures
∼0.3 MeV mainly consists of the most tightly bound iron-
group nuclei, α particles, nucleons, electrons, and γ quanta
[1,2,4,5,10]. Subsequent stages of the evolution of massive
stars may take place at higher temperatures. The composition,
density, and temperature of stellar matter depend on the mass,
as well as on the type and age of the star [1–5].

Nuclei in the star participate in various reactions induced
by γ quanta, electrons, free nucleons, and other nuclei.
Therefore, nuclei in star matter exist in both the ground
and excited states due to photoexcitation, i.e., inelastic col-
lisions between the nuclei and electrons, free nucleons, and
other nuclei. At star temperatures >∼0.2 MeV, the population
probability of low-energy (0.2–1 MeV) excited states in soft
nuclei is rather noticeable. Such states are exemplified by
the lowest 2+ surface oscillation states in 52Fe and 80Sr
with excitation energies, respectively, of εvib = 0.849 and
0.386 MeV [17]. The total vibrational amplitudes of these
states are large, namely, βvib = 0.308 and 0.404 [17]. There-
fore, in evaluating the reaction cross sections between a
charged particle and heavy soft nucleus in star matter, we
should take into account contributions from both the ground
and well-deformed excited states of the nucleus.

The astrophysical importance of charged-particle capture
on target nuclei with N ∼= Z is manifold. These capture
reactions are important for nucleosynthesis processes in stellar
matter and various burning phases of massive stars [2,4,5,7,8].

Cross sections of nuclear reactions may be evaluated using
the nucleus-nucleus or nucleon-nucleus potentials [2,18,19].
The nucleus-nucleus potential depends on the shape of nuclei
participating in the reaction [18–24]. In the case of the
interaction between spherical and prolate nuclei, the barrier
for the tip orientation of deformed nucleus is smaller than
one for the side orientation. For example, these barriers for

the system 48Ca+238U are, respectively, close to 184 and
202 MeV for corresponding orientation of 238U [20], while
the value of the barrier evaluated for the spherical shape
of 238U is 197 MeV [25]. Similar reduction of the barrier
induced by deformation strongly enhances the subbarrier
fusion cross sections for light- and medium-weight collision
systems [19,21–24]. Note that charged-particle capture on
heavy nuclei in stellar matter takes place at subbarrier energies
at temperatures <∼0.5 MeV. Therefore, the enhancement of
capture rates caused by deformation of heavy nuclei should be
important for various reactions in stars.

The 2+ shape oscillations in soft nuclei may also affect nu-
clear reaction rates in the hot stars, because the energies of such
states are small, and low-energy nuclear states can be appre-
ciably populated in stellar matter at temperatures >∼0.2 MeV.
The amplitude of surface deformation in soft nuclei is large.
Consequently, the reduction of fusion barrier induced by this
deformation can be significant. Cross sections of the fusion
(capture) reaction in stars can be enhanced essentially by the
barrier reduction caused by 2+ shape oscillations. Therefore,
quadrupole shape oscillations in soft nuclei should be taken
into account to accurately evaluate reaction cross sections in
hot star matter.

The influence of the star environment and of specific prop-
erties of nuclei on nuclear reactions in stars has been taken into
account in some calculations in nuclear astrophysics [6,12,13].
However, the p- and α-capture reactions on deformed nuclei
are usually treated by means of an effective spherical potential
of equal volume [7,8,13]. We consider enhancement of cross
sections for various nuclear reactions in hot stellar matter
induced by the low-energy 2+ oscillations of the nuclear shape,
because the barrier between nuclei is reduced as a result of
the shape deformation induced by the 2+ oscillations. As
the result, the probability of subbarrier tunneling is strongly
increased at smaller values of the barrier height. Such a
mechanism of nuclear reaction enhancement in stars has not
yet been considered. Our consideration includes α and p

capture, as well as heavy-ion fusion reactions for soft nuclei.
Reactions α+Ne, α+Mg, α+Si, and some other are very

important for the O-Si burning phases of massive stars [1,2,
4,5,8]. Heavy nuclei participating in these reactions are well
deformed in the ground state. Many other proton-rich nuclei
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participating in various charged-particle capture reactions in
stellar matter are also well deformed in the ground state. We
include the ground-state deformation of the heavy nucleus
into the interaction potentials between the charged particle
and heavy nucleus. In the framework of such treatment, we
discuss cross-section enhancement caused by the ground-state
deformation of heavy nuclei for various reactions in stellar
matter.

This article is organized as follows. Partition probabilities
of the ground and 2+ surface oscillation states of nuclei in
stellar matter are discussed in Sec. II. Influence of low-energy
quadrupole vibrations of the nuclear surface on both S factors
and the velocity-averaged cross sections of α-nucleus capture
reactions in stars is considered in Sec. III. The effect of 2+
surface oscillations on proton capture and nucleus-nucleus
fusion reactions in stellar matter is studied in Secs. IV
and V, respectively. The capture of charged particles by nuclei
with well-deformed ground states is discussed in Sec. VI.
Conclusions are presented in Sec. VII.

II. PARTITION PROBABILITY OF NUCLEAR STATES IN
STELLAR MATTER

The probability of finding a nucleus in a state with excitation
energy εi and spin ji in stellar matter at temperature T can be
estimated within the statistical approach as

P (εi, ji, kT ) = (2ji + 1) exp(−εi/kT )∑∞
i=0(2ji + 1) exp(−εi/kT )

. (1)

Here k is the Boltzmann constant. We use i = 0 for the ground
state of the nucleus with εi = 0, i = 1 for the lowest 2+ surface
oscillation state with ε1 = εvib and i � 2 for other excited
states.

The partition probabilities of both the ground and the lowest
2+ surface oscillation states in 52Fe and 80Sr nuclei for different
temperatures of stellar matter are presented in Fig. 1. The
partition probabilities are evaluated by using the experimental

FIG. 1. (Color online) Occupation probability for the ground
state and first 2+ surface oscillation state and the net occupation
probability of high-energy states P (εi > εvib) in 52Fe and 80Sr at
different temperatures of stellar matter kT.

data for the lowest 98 states in 52Fe (up to 11.780 MeV) and
90 states in 80Sr (up to 15.576 MeV) listed in compilation [26].
In addition to energies, values of spin for many levels are
also given in this data compilation [26]. If the value of spin
for level i is not listed, then we assign ji = 0. On the other
hand, when the spin is not well defined from experiments
and several possible values of spin are listed for a level in
Ref. [26], we choose the maximal value among the listed
values. It should be mentioned that this choice for spin
assignments is of marginal practical importance for specific
population probabilities displayed in Fig. 1. Those depend
primarily on the spins of the lowest states. The spins of 6
and 3 lowest states in 52Fe and 80Sr, respectively, are well
established [26].

The total occupation probability of high-energy states with
energies εi > εvib is equal to

P (εi > εvib) = 1 −
∑
i=0,1

P (εi, ji, kT ).

We see in Fig. 1 that the net occupation probability of high-
energy states becomes dominant at very high temperatures of
the stellar matter, kT >∼ 0.5 MeV. As seen further in Fig. 1,
the partition of 2+ surface oscillation states is negligible for
small temperatures kT <∼ 0.1 MeV. On the other hand, the
2+ vibrational states are noticeably populated at temperatures
0.2 <∼ kT <∼ 0.7 MeV. Moreover, the occupation for vibrational
states is higher than for the ground states at temperatures kT >

0.53 MeV for 52Fe and at kT > 0.24 MeV for 80Sr. Therefore,
nuclear reaction cross sections at moderate temperatures of
stellar matter should be evaluated by taking into account
properties of both the ground and 2+ states. Nuclei 52Fe
and 80Sr are spherical in the ground state but generally
deformed in the first 2+ surface vibrational states. Thus it is
necessary to consider the nuclear reactions both for spherical
and deformed shapes of nuclei 52Fe and 80Sr in hot star
matter.

The cases of the nuclei 52Fe and 80Sr are interesting from
the point of view of the role of deformation in reactions. On
the one hand, energies of the 2+ surface oscillations εvib ≡ ε1

are low, making the occupations for these states significant
in the hot stellar medium. On the other hand, the stiffness of
the nuclear surface with respect to deformations Cvib is also
low for these nuclei, making the shape vibration amplitudes
βvib = [5εvib/(2Cvib)]1/2 large. We consider 2+ surface oscil-
lations in nuclei in the framework of the harmonic oscillator
model [27].

There is a variety of nuclei in stellar matter. Nuclei far from
the β-stability line are soft as a rule. Nuclei with a number of
nucleons, being far from the magic numbers, and lying along
the β-stability line are often soft too. However, many rigid
nuclei such as 4He, 12C, 16O, 40,48Ca, 208Pb also appear in
hot stellar matter. Energies of the 2+ surface oscillation states
are rather high in those nuclei, making the 2+ states weakly
populated in the stellar matter. Shape vibration amplitudes
are small in rigid nuclei. As a result, the influence of the 2+
surface vibrations for such rigid nuclei on nuclear reactions in
stars may be neglected. Overall, it is necessary to develop
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a formalism for nuclear reactions in stellar matter that is
applicable to both to soft and rigid nuclei.

III. α-CAPTURE REACTIONS IN STARS

The α particle may be considered the most rigid nucleus,
because the energy of the first excited state is 20.21 MeV [26].
The population of such a high-energy state is negligible in
stellar matter at temperatures kT <∼ 1 MeV. On the other hand,
many states with energies εi <∼ 1 MeV in soft nuclei can be
noticeably populated at kT <∼ 1 MeV. Therefore, in evaluating
α-capture reaction cross sections in stellar matter at kT ∼
0.3 MeV, we should take into account the contributions of var-
ious populated states in soft nuclei only. Correspondingly, the
α-capture reaction cross section in star matter at temperature
T can be estimated as

σ (E, kT ) =
∞∑
i=0

P (εi, ji, kT )σi(E), (2)

where σi(E) is the fusion cross section between the α particle
and a nucleus in a state i with energy εi and spin ji , and E is
the collision energy.

We shall consider the α capture on nuclei 52Fe and 80Sr
as an example. The reaction α + 52Fe ⇒ 56Ni may take
place in the last stage of the silicon burning of the stellar
matter, when iron nuclei are the most abundant nuclei [5,6].
Reaction α + 80Sr ⇒ 84Zr is important for nucleosynthesis.
Note that α-capture reactions on nuclei with N ∼= Z are sub-
stantial for nucleosynthesis processes in stellar and explosive
burning [5–8].

As we have seen in the previous section, the ground state
and the first 2+ surface oscillation state of a heavy nucleus
are mainly populated in star matter at moderate temperatures.
The nuclei 52Fe and 80Sr are spherical in the ground state and
generally deformed in the first 2+ state.

The α-capture reaction cross section in star matter at
temperature T consists of three terms

σ (E, kT ) = P (0, 0, kT )σ0(E) + P (εvib, 2, kT )σ1(E)

+
∞∑
i=2

P (εi, ji, kT )σi(E), (3)

where P (0, 0, kT ) and P (εvib, 2, kT ) are the partition prob-
abilities for the ground state and the lowest 2+ surface
oscillation state, respectively, while σ0(E) and σ1(E) are the
cross sections of α capture on the heavy nucleus in the ground
state and the lowest 2+ vibrational state, correspondingly.

The fusion cross section of two particles with corresponding
values of spins 0 and j is given by [18]

σ (E) = πh̄2

2µE(2j + 1)

∑
J��′

(2J + 1)tJ ��′ (E), (4)

where µ is the reduced mass, � and �′ are the orbital moment
of ingoing and outgoing channels, J is the total angular
momentum, and tJ ��′(E) is the generalized transmission
coefficient. If there is no spin-orbit forces in the potential,
then the transmission coefficient becomes independent on J

and tJ ��′(E) = δ��′ t(E, �) [18]. In this case, Eq. (4) can be
simplified as

σ (E) = πh̄2

2µE(2j + 1)

∑
J�

(2J + 1)t(E, �)

= πh̄2

2µE(2j + 1)

∑
�

t(E, �)
�+j∑

J=|�−j |
(2J + 1)

= πh̄2

2µE

∑
�

(2� + 1)t(E, �), (5)

where t(E, �) is the transmission coefficient for particles
penetration through the interaction potential barrier between
them at collision energy E and orbital momentum �.

Any indications on the spin-orbit interaction between the α

particle and heavy nucleus are not known yet. The ground-state
spin of the α particle is zero. Therefore, we apply Eq. (5) to the
evaluation of the α-capture cross section on a heavy nucleus
in the ground and excited states.

The ground-state shape of α particles 52Fe and 80Sr is spher-
ical; therefore, the α-capture cross section can be evaluated in
the usual manner [see Eq. (5) and Refs. [18,19,23,28]],

σ0(E) = πh̄2

2µE

∑
�

(2� + 1)t0(E, �). (6)

Here t0(E, �) is the transmission coefficient for penetration
through the interaction potential barrier between the spherical
nucleus in the ground state and the α particle at collision
energy E.

The cross section of α capture on a heavy nucleus in the 2+
vibrational state is also obtained by using Eq. (5). However,
the surface of the nucleus in the 2+ state oscillates around a
spherical equilibrium shape. Therefore, we should take into
account both the orientation and the surface oscillation effects
when evaluating the transmission coefficient in this case.

During the α-nucleus fusion reaction, the α particle can
arrive from any direction; therefore, we should average over
the space angles. In the case of collision between spherical
and axially deformed nuclei, averaging over the space angle
is reduced to averaging over the angle θ , where θ is the
angle between the symmetry axis of the axially symmetric
deformed nucleus and the vector directed from the center of
the deformed nucleus to the center of the α particle. Therefore,
the fusion reaction cross section between the nucleus with axial
quadrupole surface vibrations and the α particle at collision
energy E equals

σ1(E) = πh̄2

2µE

∑
�

(2� + 1)
∫ π/2

0
t1(E, �, θ ) sin(θ )dθ (7)

(see also Ref. [23]). Here t1(E, �, θ ) is the transmission
coefficient, which shows the probability of penetration through
the potential barrier for an α particle coming in at angle θ .

The nuclear surface in the 2+ state in 52Fe and 80Sr oscillates
about the spherical equilibrium shape. The distance between
the deformed nuclear surface and the origin is

R(θ ) = R0(1 + βY20(θ )), (8)
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where R0 is the radius of the spherical nucleus, β is the
deformation parameter, and Y20(θ ) is the spherical harmonic
function. The distribution of the deformation parameter values
in the 2+ state is described by the square of the vibrational
wave function ϕvib(β), i.e.,

D(β) = |ϕvib(β)|2 = β2

√
2πβ3

0

exp

(
− β2

2β2
0

)
, (9)

where β0 = βvib/
√

5 is the zero-point amplitude. Here we use
the harmonic oscillator model of the 2+ surface vibrational
state in nuclei [27]. Because the value of β can be different
during the barrier penetration, we should average over all
possible values of the deformation parameter. As a result,

t1(E, �, θ ) =
∫ ∞

−∞
D(β)t1(E, �, θ, β) dβ, (10)

where t1(E, �, θ, β) is the transmission coefficient of a charged
particle coming in at angle θ and evaluated at the value of
surface deformation β. [Here we consider the evaluation of
the cross section and other related quantities in the framework
of the time-independent scattering theory [19]. Therefore, the
time-independent oscillator wave function ϕvib(β) is used in
Eqs. (9)–(10). The averaging over β in Eq. (10) is equivalent
to time averaging over the period of the nuclear surface
oscillations in the framework of time-dependent scattering
theory [19].]

We estimate the transmission coefficients in Eqs. (6) and
(10) using the semiclassical WKB approximation at collision
energies below the barrier, that is,

t0(E, �) =
{

1 + exp

[
2

h̄

∫ b

a

dr
√

2µ (v0(r, �, E) − E)

]}−1

,

(11)

t1(E, �, θ, β)

=
{

1 + exp

[
2

h̄

∫ b(θ)

a(θ)
dr

√
2µ (v1(r,�,θ,E,β) − E)

]}−1

.

(12)

Here v0(r, �, E) and v1(r, �, θ, E, β) are the interaction poten-
tials between the α particle and nucleus in the spherical ground
state and deformed 2+ state, respectively; r is the distance
between the mass centers of colliding particles; and a, a(θ )
and b, b(θ ) are the inner and outer turning points determined
from the corresponding equations v0(r, �, E)|r=a,b = E and
v1(r, �, θ, E, β)|r=a(θ),b(θ) = E. The transmission coefficients
t0(E, �) and t1(E, �, θ, β) are approximated by an expression
for a parabolic barrier at collision energies higher than the
barrier energy.

We propose that parameters of α-nucleus interactions are
the same for the ground and vibrational states; therefore,
v0(r, �, E) = v1(r, �, θ, E, β = 0). Because of this, we omit
indexes 0 and 1 for potentials below.

The interaction potential between the deformed nucleus and
charged particle v(r, �, θ, β) consists of Coulomb vC(r, θ, β),
nuclear vN (r, θ, β), and centrifugal v�(r) parts,

v(r, �, θ, E, β) = vC(r, θ, β) + vN (r, θ, E, β) + v�(r). (13)

The Coulomb part of the interaction potential between the
α particle and deformed nucleus takes into account the effect
of deformation to the first order,

vC(r, θ, β) = zZe2

r

[
1 + 3R2

0

5r2
βY20(θ )

]
, (14)

if r � rm(θ, β), and

vC(r, θ, β) ≈ zZe2

rm(θ, β)

[
3

2
− r2

2rm(θ, β)2

+ 3R2
0

5rm(θ, β)2
βY20(θ )

(
2 − r3

rm(θ, β)3

)]
, (15)

if r <∼ rm(θ, β). Here z = 2 is the charge of the α particle, Z

is the number of protons in the nucleus, and rm(θ, β) is the
effective radius of the nuclear part of the α-nucleus potential.
The inner turning point a(θ ) is close to rm(θ, β); therefore,
the representation of the Coulomb field in the form (15) at
distances r <∼ rm(θ ) ensures continuity of the Coulomb field
and its derivative at r = rm(θ, β) [23].

The nuclear part of the α-nucleus interaction is taken in the
Woods-Saxon shape as

vN (r, θ, E, β) = V (A,Z,E)

1 + exp[(r − rm(θ, β))/d]
, (16)

with parameters [23]

V (A,Z,E) = −(30.275 − 0.45838Z/A1/3

+ 58.270I − 0.24244E), (17)

rm(θ, β) = 1.5268 + R(θ )

= 1.5268 + R0(1 + βY20(θ )), (18)

R0 = Rp

(
1 + 3.0909

/
R2

p

) + 0.12430t, (19)

Rp = 1.24A1/3(1 + 1.646/A − 0.191I ), (20)

t = I − 0.4A/(A + 200), (21)

d = 0.49290. (22)

Here A is the number of nucleons in a nucleus, and I = (A −
2Z)/A.

The rotational part of the interaction is

v�(r) = h̄2�(� + 1)/(2µr2). (23)

Data for both the α-decay half-lives and the fusion cross
sections around the barrier for reactions α + 40Ca, α + 59Co,
and α + 208Pb are well described by using this parametrization
of the α-nucleus potential [23].

The values of the potential barrier vbar(θ ) between spherical
and deformed (β �= 0) nuclei at various angles θ and � = 0
obey the inequalities

vbar(θ = 0)|β>0 < v
sph
bar < vbar(θ = π/2)|β>0, (24)

vbar(θ = 0)|β<0 > v
sph
bar > vbar(θ = π/2)|β<0, (25)

where v
sph
bar is the barrier of the interaction potential if both

nuclei are spherical. The barrier of the interaction potential
v(r, �, θ, E, β) is reduced by quadrupole surface distortion in
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one or both interacting nuclei. As an example, the values of the
barrier for reactions α + 52Fe and α + 80Sr for the spherical
ground state at 15 MeV collision energy are v

sph
bar = 7.98

and 11.13 MeV, respectively. If nuclei 52Fe and 80Sr are
deformed (let β = βvib), these barrier values are distributed
over the ranges vbar(θ = 0, β = 0.308) = 7.35 to vbar(θ =
π/2, β = 0.308) = 8.30 MeV and vbar(θ = 0, β = 0.404) =
9.97 to vbar(θ = π/2, β = 0.404) = 11.70 MeV, correspond-
ingly. The reduction of the barrier height by ∼0.5–1 MeV
induced by deformation β = βvib increases the transmission
coefficient at subbarrier energies for θ close to 0. As a result,
the fusion cross section is strongly enhanced for subbarrier
collision energies E.

The shape of a nucleus in highly excited states i � 2 can
be spherical or deformed. The kind of surface deformation
can be different for different high-energy states. The high-
multipolarity λ � 3 axial or nonaxial multipole λ � 2 nuclear
surface deformations usually lead to the smaller reduction of
the barrier than those induced by the axial quadrupole surface
deformation. Therefore, we can approximate σi(E)|i � 2 ≈
σ0(E) and apply our model to high stellar temperatures kT <∼
1 MeV. As a result, the α-capture reaction cross section in star
matter (3) can be rewritten as

σ (E, kT ) ≈
[
P (0, 0, kT ) +

∞∑
i=2

P (εi, ji, kT )

]
σ0(E)

+P (εvib, 2, kT )σ1(E). (26)

Using the identity

∞∑
i=0

P (εi, ji, kT ) ≡
[
P (0, 0, kT ) +

∞∑
i=2

P (εi, ji, kT )

]

+P (εvib, 2, kT ) ≡ 1, (27)

we reduce Eq. (26) to the simple form

σ (E, kT ) ≈ σ0(E) + P (εvib, 2, kT )[σ1(E) − σ0(E)]

= σ0(E){1 + P (εvib, 2, kT )[s(E) − 1]}. (28)

Here, the term containing P (εvib, 2, kT ) is related to the cross-
section enhancement induced by the population of the first 2+
surface oscillation state in soft nuclei in the stellar matter, and

s(E) = σ1(E)/σ0(E). (29)

Ratio s(E) directly shows the effect of cross-section en-
hancement caused by deformation of the nuclear surface in
2+ states, because if the surface deformation is neglected, then
σ1(E) = σ0(E) and s(E) = 1.

If the nuclear surface is spherical in the ground and excited
states, then σi(E) = σ0(E) for any i and s(E) = 1. In this case,
we obtain from Eq. (3) using the identity (27) that

σsph(E, kT ) = σ0(E). (30)

We can also obtain this result from Eq. (28) in the limit
s(E) = 1.

The reaction S factor is proportional to the cross section [6]
such that

S(E, kT ) = E exp(−2πη(E))σ (E, kT ), (31)

where η(E) = zZe2/(h̄v) is the Sommerfeld parameter,
and v = (2E/µ)1/2 is the relative velocity in the entrance
channel.

The enhancement of the S factor or the reaction cross
section in stellar matter induced by the 2+ surface oscillation
is described by the ratio

s(E, kT ) = S(E, kT )

Ssph(E)
= σ (E, kT )

σsph(E, kT )

≈ 1 + P (εvib, 2, kT )[s(E) − 1], (32)

where

Ssph(E) = E exp(−2πη(E))σsph(E, kT )

= E exp(−2πη(E))σ0(E). (33)

The results of the S-factor enhancement for capture reac-
tions α + 52Fe and α + 80Sr evaluated for star temperatures
kT = 0.2 and 0.3 MeV are presented in Fig. 2. These
temperatures are related to the O-Si burning phases in the
core of massive stars [2,5]. As seen in this figure, the S factor
is enhanced by the 2+ surface oscillations at low collision
energies E. The S-factor enhancement for reactions α + 52Fe
and α + 80Sr grows with the temperature of the stellar matter
in Fig. 2, because the partition of the 2+ state increases in this
temperature interval, see Fig. 1.

We also present results for the cross-section ratio s(E) in
Fig. 2. We see that values of s(E) are significantly larger
than 1 for both reactions at low (subbarrier) collision energies
E. The cross-section enhancement induced by deformation is
more important for the α + 80Sr system.

The dependence of the transmission coefficient on the
surface deformation is negligible at collision energies above
the barrier. Therefore, s(E, kT ) and s(E) are close to 1 at high
collision energies, see Fig. 2.

FIG. 2. (Color online) S-factor enhancement for capture reactions
α + 52Fe and α + 80Sr.
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The stellar reaction cross sections are often averaged over
the Maxwell-Boltzmann distribution of collision velocities
v [2,12,13]. This cross section can be presented in the
form [12]

〈σ (kT )〉 = 2√
π

∫ ∞
0 σ (E, kT )E exp(−E/kT )dE∫ ∞

0 E exp(−E/kT )dE
, (34)

where brackets 〈 〉 mean the Maxwell-Boltzmann averaging
over the collision velocities. We determine the velocity-
averaged cross sections 〈σsph(kT )〉, 〈σ0(kT )〉, and 〈σ1(kT )〉
in the similar way. Note that 〈σsph(kT )〉 = 〈σ0(kT )〉 due to
Eq. (30).

The enhancement of velocity-averaged cross sections
〈σ (kT )〉/〈σsph(kT )〉 = 〈σ (kT )〉/〈σ0(kT )〉 for α-capture reac-
tions α + 52Fe and α + 80Sr caused by 2+ shape vibrations
is shown in Fig. 3. Ratios of velocity-averaged α-capture
cross sections by nucleus with vibrating and spherical sur-
faces 〈σ1(kT )〉/〈σ0(kT )〉 are also presented in this figure
for comparison. As we see, the surface oscillations enhance
the velocity-averaged cross sections. Because of this, the
ratio 〈σ (kT )〉/〈σ0(kT )〉 is noticeably greater than 1 for kT >∼
0.1 MeV. However, for low temperatures of star matter kT <∼
0.1 MeV, the partition probability of the 2+ surface oscillation
state is very small (see in Fig. 1); therefore, 〈σ (kT )〉/〈σ0(kT )〉
is close to 1. At star matter temperatures kT >∼ 0.6 MeV,
the main contribution to the velocity-averaged capture cross
section is related to a higher collision energy E, which is close
to the barrier. Therefore, the effect of the barrier penetration
enhancement due to surface vibrations of the nucleus in the 2+
state is diminished.

When the results presented in Figs. 2 and 3 are compared, it
is apparent that the 2+ surface vibrations are important for both
the S-factor values at low energies and the velocity-averaged
cross sections at moderate star temperatures. The enhancement
of the reaction S factor or the capture cross section induced
by 2+ nuclear surface excitation in stellar matter can change
the balance between various reactions. This may affect the

FIG. 3. (Color online) Enhancement of velocity-averaged cross
sections of α-capture reactions α + 52Fe and α + 80Sr.

equilibrium conditions between direct and inverse reactions as
well as the abundance of elements in hot stellar matter.

IV. p-CAPTURE REACTIONS IN STARS

We consider p-capture reactions on either a spherical or
deformed nucleus in hot star matter using a formalism similar
to that used for the α-capture reactions in the previous section.
The proton spin is jp = 1

2 . As a result, the nuclear part
of the p-nucleus potential vn(r, θ ) should include the spin-
orbit contribution [29,30] in contrast to the α-particle case.
Therefore, we should modify the approach for cross-section
evaluation presented in the previous section:

(i) The nuclear part of the α-nucleus potential described
by Eqs. (16)–(22) is substituted by the Chepurnov
p-nucleus potential with the central and spin-orbit parts
[29]. The central part of the Chepurnov p-nucleus
potential has also the Woods-Saxon shape (16), while
its spin-orbit part is proportional to the radial derivative
of the Woods-Saxon potential.

(ii) The deformation of the nuclear surface is also taken into
account in the spin-orbit potential.

(iii) Summation over J in Eq. (4)

1

2jp + 1

∑
J��′

(2J + 1)tJ ��′(E, �, θ )

= 1

2

∑
J��′

(2J + 1)tJ ��′(E, �, θ ) (35)

is replaced by (see Refs. [18,30])

∑
�

[(� + 1) tJ=�+ 1
2
(E, �, θ ) + � tJ=�− 1

2
(E, �, θ )], (36)

where tJ (E, �, θ ) is the transmission coefficient, which
shows the probability of proton penetration through the
barrier formed at the angle θ between the symmetry axis
of the axial-symmetric deformed nucleus and the vector
directed from the center of the deformed nucleus to the
proton, and J is the total angular momentum �J = �� + �jp.

Note that Eq. (36) is exact in the case of p capture on a
nucleus in the state with zero value of the spin (see Appendix A
in Ref. [18]). We would like to roughly estimate the deforma-
tion effect on p capture. Therefore, for the sake of simplicity,
we neglect the spin of nuclear states in a heavy nucleus and
apply Eq. (36) to p capture on the nucleus with any value of
spin.

From Fig. 4, we can see that the 2+ surface oscillations
weakly affect the S-factor values for reactions p + 52Fe
and p + 80Sr. The enhancement of p-capture cross sections
averaged over the Maxwell-Boltzmann distribution of collision
velocities induced by surface vibrations for these reactions are
given in Fig. 5. As seen, the 2+ surface oscillations slightly
enhance the velocity-averaged cross sections for p-capture
reactions.
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FIG. 4. (Color online) S factor enhancement for capture reactions
p + 52Fe and p + 80Sr.

V. NUCLEUS-NUCLEUS FUSION REACTIONS IN STARS

Both nuclei participating in fusion reactions can be excited
in hot stellar matter. Therefore, the nucleus-nucleus fusion
cross sections can be evaluated as

σ (E, kT ) =
∞∑

i1,i2=0

P1(εi1 , ji1 , kT )

×P2(εi2 , ji2 , kT )σi1i2 (E), (37)

where P1(εi1 , ji1 , kT ) and P2(εi2 , ji2 , kT ) are the partition
probabilities of states i1 in the first nucleus and i2 in the
second one, respectively, and σi1i2 (E) is the fusion reaction
cross section between these nuclei in the states i1 and i2.

If one nucleus is rigid while another one is soft, the 2+
surface oscillations are mainly important in the soft reaction
partner. In that case, the double sum in Eq. (37) reduces to
the single sum, see Eq. (2). Therefore, we can easily adapt our
approach for the cross-section evaluation presented in previous
sections to the nucleus-nucleus fusion reactions.

Let us consider fusion reaction 16O+32Mg. This reaction
may take place in massive stars during explosive O-Si burning

FIG. 5. (Color online) Enhancement of velocity-averaged cross
sections of p-capture reactions p + 52Fe and p + 80Sr.

phases. The neutron-reach 32Mg can be formed in hot star
matter by n capture. The compound nucleus formed in this
reaction is 48Ca.

Nucleus 16O is spherical, double magic, and very rigid.
The energies of the lowest 0+, 3−, and 2+ states in 16O are,
respectively, 6.05, 6.13, and 6.92 MeV [17,26]. Therefore,
probabilities of population of such high-energy states in stars
at kT <∼ 1 MeV are negligible. The ground-state shape of 32Mg
is spherical [31]. The excitation energy of the lowest 2+ surface
oscillation state in 32Mg is εvib = 0.8855 MeV [17]. The total
vibrational amplitude of this state is very large, βvib = 0.473
[17]. (Data for other exited states are picked up from Ref. [26].)
So, the neutron-reach nucleus 32Mg is very soft. In this
case, the fusion reaction model described in Sec. III may be
applied, with minor modifications, to the reaction 16O+32Mg.
The modifications are only related to the nuclear part of the
interaction potential.

The functional form of the nuclear interaction potential
between spherical nuclei has been discussed in Ref. [25].
This potential is obtained by using the semimicroscopic
calculations of the interaction energy of two nuclei. Heights
and radii of empirical fusion barriers are well described by this
potential for various pairs of interacting nuclei [25,32,33].

The nuclear part of the potential depends on both the
distance between surfaces of colliding nuclei d(r, θ ) and
the surface curvature of corresponding nuclei at the closest
point [34]. Therefore, the nuclear part of the potential between
spherical and deformed nuclei may be approximated as

vn(d(r, θ )) ≈ (C1 + C2)/(C1 + C2(θ )) v0
n(d(r, θ )). (38)

Here, v0
n(d(r)) is the nuclear part of the interaction potential

between two spherical nuclei with radii R0
1 and R0

2 at a
distance between their surfaces d(r) = r − R0

1 − R0
2 [25];

C1(2) = 1/R0
1(2) are the surface curvatures of corresponding

spherical nuclei; R2(θ ) = R0
2(1 + βY20(θ )) is the distance of

the surface from the origin of the deformed nucleus; C2(θ ) ≈
(1 + 2βY20(θ ))/R0

2 is the curvature of the deformed nuclear
surface; and d(r, θ ) ≈ r − R0

1 − R2(θ ). Substituting potential
(38) into Eq. (13), we can estimate the cross section of the
heavy-ion fusion reaction in the framework of our model.

The S-factor enhancement for fusion reaction 16O+32Mg
induced by the 2+ surface oscillation in 32Mg is shown in
Fig. 6. The S-factor values are strongly enhanced by the
surface oscillations, especially at low collision energies E.
The enhancement of the fusion cross section for this reaction
averaged over the Maxwell-Boltzmann distribution of collision
velocities is presented in Fig. 7. As seen there, the 2+ surface
oscillations increase the velocity-averaged cross sections of
nucleus-nucleus fusion reactions in stellar matter.

VI. CAPTURE OF CHARGED PARTICLES ON NUCLEI
WITH WELL-DEFORMED GROUND STATE IN STARS

If a nucleus is well deformed in the ground state, then two
kinds of surface deformations (the static one of the ground
state and the dynamic one of the 2+ vibrational state) should
be taken into account when evaluating the interaction potential
between a charged particle and the nucleus. The dynamic
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FIG. 6. (Color online) S-factor enhancement for fusion reaction
16O+32Mg.

deformations are related to quadrupole surface vibrations
about the deformed ground-state shape of the nucleus. Both
types of quadrupole surface deformations should affect the
cross sections of nuclear reactions in hot stellar matter.

We can extend our model for evaluating capture reactions to
a nucleus with a deformed ground-state shape. The extension
to such a case is straightforward. The static amplitude βstatic

should be taken into account in the evaluation of capture
on the nucleus in the ground state σ0(E), whereas the static
and dynamic deformation amplitudes should be summed up
for estimating capture on the nucleus in the first 2+ vibra-
tional state σ1(E). By putting D(β) = δ(β − βstatic), we adapt
Eqs. (7), (10), and (12) to obtain σ0(E), see also Ref. [23]. The
influence of the 2+ surface oscillations around the deformed
ground-state shape on physical quantities will be similar to the
case of the 2+ surface vibrations around the spherical shape.
Thus, we should substitute D(β) in Eq. (10) by D(β − βstatic)
to estimate the effect of the 2+ surface oscillations around
the deformed shape. Here, we take into account the fact that
vibrations of β type about the deformed shape [27] have the

FIG. 7. (Color online) Enhancement of velocity-averaged cross
section for reaction 16O+32Mg.

largest effect on the particle-nucleus potential and that the
natures of quadrupole surface oscillations in deformed and
spherical nuclei are similar.

A. α capture

Reactions α + 22Ne and α + 24Mg are very important in
the burning of massive stars and nucleosynthesis in stellar
matter [5,8].

Nuclei 22Na and 24Mg are well deformed in the ground
state. The values of the corresponding deformation parameters
are βstatic = 0.326 and 0.374 [31]. Excitation energies of
the first 2+ state in these nuclei are, respectively, 1.27 and
1.37 MeV [17]. However, the nature of these excited states
is rotational. Energies of the lowest 2+ vibrational state
are, correspondingly, 4.46 and 4.24 MeV [26]. Energies are
sufficiently high; therefore, the occupation probabilities of the
lowest 2+ vibrational excitation in 22Na or 24Mg in stellar
matter at temperatures kT <∼ 0.3 MeV are small. Consequently,
we can ignore the dynamic deformations related to the 2+
vibrational state in these nuclei and take into account only the
static deformation. Shapes of the nucleus in the ground and
low-spin rotational excited states are very similar; therefore,
the cross sections for these states are the same. Occupation
probabilities of the ground and low-spin rotational excited
states are summed, and the net probability of these states is
very close to 1.

We present the evaluation of the ratio σstatic(E)/σsph(E) for
reactions α + 22Ne and α + 24Mg in Fig. 8, where σstatic(E)
and σsph(E) are the cross sections obtained, respectively, for
deformed and spherical shapes of heavy nuclei. We see that
the enhancement of the cross sections or the S factors and
the velocity-averaged cross sections for reactions α + 22Ne
and α + 24Mg induced by static deformation is strong. This
enhancement increases as the temperature of stellar matter
decreases.

Comparing results in Fig. 8, we conclude that enhancement
of the capture cross section caused by static deformation of Mg
is larger than that for the Ne case. There are two reasons for

FIG. 8. (Color online) Enhancement of S factors and velocity-
averaged cross sections for reactions α + 22Ne and α + 24Mg induced
by static deformation of heavy nuclei.
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such an effect. First, the value of the deformation parameter in
24Mg is larger than that in 22Ne. Second, the number of protons
in 24Mg is also larger than that in 22Ne.

The range of barrier distribution (24) or (25) for the
α-capture reaction is induced both by both the static deforma-
tion of the heavy nucleus β and by the mutual orientation of the
heavy nucleus and the incoming α particle (angle θ ). In contrast
to this, the treatment of α-capture reactions on deformed nuclei
based on an effective spherical potential of equal volume is
related to a single barrier. The height of this single barrier
v

sph
bar (β) estimated at deformation β is slightly smaller than

that evaluated for the same colliding system proceeding from
systematics for the α-nucleus potential v

sph. syst.
bar . The barrier

reduction due to volume correction is proportional to β2 for
effective spherical potential of equal volume, while variation
of the barrier induced by β in our approach [see Eqs. (14)–(22)]
is proportional to β and depends on θ . As a result, the values
of potentials obey the inequalities

vbar(θ = 0)|β>0 < v
sph
bar (β) < v

sph. syst.
bar < vbar

(
θ = π

2

)∣∣∣
β>0

.

Therefore, the transmission coefficients t(E, �, θ ) and the ratio
σstatic(E)/σsph(E) are differently described in the frameworks
of these two approaches at very low collision energies E.
The difference between cross-section values evaluated in
both approaches increases with the value of the deformation
parameter.

B. p capture

The p-capture reactions on proton-rich nuclei are important
for rp-nucleosynthesis in stellar matter [2,7]. Therefore, let us
consider the reactions p + 72,76Kr. The 72Kr is a significant
waiting point in the rp-process [7]. Proton-rich nuclei 72,76Kr
are well-deformed in the ground state. It is interesting that
the ground-state shape is oblate for 72Kr and prolate for
76Kr. Values of the corresponding deformation parameter are
βstatic = −0.349 and 0.4 [31].

The p-capture reaction below the barrier is also strongly
enhanced by the ground-state deformation of nuclei, see Fig. 9.

FIG. 9. (Color online) Same as Fig. 8, but for reactions p + 72,76Kr.

FIG. 10. (Color online) Same as Fig. 8, but for 16O+22Ne.

We neglect the dynamic deformation related to the
2+ vibrational state in 72,76Kr, because energies of the lowest
vibrational states in these nuclei are much larger than those of
the lowest rotational levels [26]. Because of this, vibrational
levels in these nuclei are weakly populated in stellar matter.
The proton spin is exactly taken into account in our evaluation
in this case, because the ground-state spin of even-even nuclei
72,76Kr is zero and we neglect the dynamic deformations.
Comparing the results in Fig. 9 reveals that the prolate
deformation enhances the p-capture reaction cross section
more strongly than the similar oblate deformation.

C. Heavy-ion fusion

The enhancement of the S factor and velocity-averaged
cross section for the 16O+22Ne reaction induced by static
deformation of the heavy nucleus is presented in Fig. 10.
The properties of excited states in the colliding nuclei were
discussed before. Therefore, we take into account only the
static ground-state deformation of 22Ne in our calculations.
Reaction 16O+22Ne may take place at the O-Si burning phase
in hot stellar matter. We see very strong enhancement of both
the S factor and the velocity-averaged cross section, especially
at low temperatures of stellar matter.

VII. DISCUSSION AND CONCLUSIONS

We demonstrated that the fusion (capture) reactions be-
tween two nuclei or between a charged particle and a nucleus
at subbarrier collision energies are enhanced by the 2+ surface
oscillations in soft nuclei in hot stellar matter. The cross
sections averaged over collision velocities are also increased
by the 2+ surface vibrations. The effect of cross-section
enhancement, induced by the shape oscillations, depends on
both the temperature of the stellar matter and the excitation
energy of 2+ state.

Comparing the results for α-, p-capture reactions and
heavy-ion fusion reactions indicates that the influence of the 2+
surface vibrations grows with increasing charges and masses
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of the colliding particles. This influence is negligible for
the p-capture and important for the α-capture and heavy-ion
fusion reactions.

The enhancement of capture cross sections by quadrupole
surface oscillations is significant for soft nuclei with low-
energy 2+ states. Such nuclei often occur far from the β-
stability line. This enhancement of capture rate is negligible in
the case of rigid nuclei. Therefore, the mass and charge depen-
dencies of the lowest 2+ state are significant for abundances of
heavy proton-rich elements in hot star matter [7,8]. Reactions
with heavier colliding partners are more strongly enhanced by
the low-energy 2+ oscillations, because the barrier reductions
induced by axial quadrupole oscillations of nuclear surface are
larger in heavier systems.

Our model can be easily extended to the case of high-
multipole λ � 3 axial surface oscillations. However, the ener-
gies of high-multipole surface vibrations are higher than those
for λ = 2 in most nuclei [17]. Moreover, the amplitudes of
the potential barrier reductions due to axial λ � 3 or nonaxial
λ � 2 multipole surface distortions are smaller than those
caused by the axial quadrupole deformation. So the effect
of high-multipole axial or nonaxial nuclear surface vibrations
may be significant only for the charged-particle capture on
nuclei, which are especially soft to a specific kind of surface
deformation.

We have studied the enhancement of fusion reaction cross
sections induced by the 2+ surface oscillations of nuclei
participating in reactions in star matter. However, many
other mechanisms of subbarrier fusion enhancement have
been discussed, see Refs. [14,19,21,22,28,32] and references
therein. Therefore, it is interesting to evaluate the role of
various reaction mechanisms in the framework of detailed
models.

The enhancement of reaction cross sections, induced by
the surface oscillations of colliding nuclei, is important for
careful evaluation of the equilibrium compositions of nuclei

in hot stellar matter. The 2+ surface oscillations in soft nuclei
with spherical ground-state shape should be considered in the
description of nucleosynthesis during supernova explosions.

It is shown that p and α captures on nuclei with well-
deformed ground states are significantly enhanced by the
ground-state deformation of nuclei at low temperatures of
stellar matter. Similar effects also take place in fusion
reactions between deformed heavy ions. This effect is also
very important in the O-Si burning phases of massive stars,
when reactions between charged particles and well-deformed
nuclei such as 19−21F, 20−24Ne, 20−26Ne, 22−28Mg, 22−29Al,
and 24−29Si determine the burning processes in massive
stars. Enhancement of the charged-particle capture reactions
by the ground-state deformation is very significant for the
nucleosynthesis of proton-rich elements in hot stellar matter.
The origin of the large abundances of proton-rich nuclei with
well-deformed shapes, especially in the Z = 36–42 region
[7], may be associated with enhancement of the charged-
particle capture cross section caused by the ground-state
deformation.

Comparing results for the velocity-averaged cross sections
in Figs. 3, 5, 7, and 8–10, we see that the enhancement of
the reaction cross section caused by static deformation is
very strong for low temperatures of star matter. However,
the deformation effect for reactions with soft spherical nuclei
is important at high temperatures, when the occupation
probability of the lowest 2+ vibrational state is significant.
The enhancement of the reaction cross section related to the
static deformation is very strong at low temperature, because
the ground state is mainly populated at low temperatures.
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