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With the help of the exact distribution function of zero sound it is shown that in the Landau zero-
sound approximation with a spin-independent interaction, isoscalar transverse twist oscillations
of the current are impossible. The reason for the wrong conclusion of several recent articles about
the existence of such oscillations is the unjustified truncation of the expansion in the p momenta of
the distribution function of the zero sound.

1. In the Landau theory of Fermi liquids 1-3for the inter-
action that does not depend on the spins of the quasiparti-
des, one has noted the possibility of transverse twist oscilla-
tions of the current without variation of the density. For
nuclei such current oscillations were first studied by Holz-
warth and Eckart in the hydrodynamical approximation,4.s
which was derived in Refs. 6 and 7 from the Landau kinetic
equation for the zero sound by expansion of the exact distri-
bution function of the zero sound with respect to the multi-
polarity of the deformation of the Fermi surface and trunca-
tion of the resulting series at the quadrupole deformation.
However, as will be shown below with the help of the exact
distribution function of the zero sound, such oscillations of
the current are impossible.

2, Direct extension of the Landau theory, 1-3 which was
formulated for an infinite isotropic medium, to nuclei is dif-
ficult because of their finite size. However, the sufficiently
abrupt change of the density on the nuclear boundary allows
one to definean effectivenuclear surface,8.9which consider-
ably simplifies the solution of the problem. Inside the nu-
cleus the zero-sound oscillations of nuclear matter are de-
scribed by the Landau equation for the zero sound in an
infinite medium. On the effectivesurface of the nucleus these
oscillations satisfy certain boundary conditions.9,1O

Let us write down the equation for the distribution
function of the quasiparticles inside the nucleus at zero tem-
peraturel-3,IO:

aj<")(r,p,t) +v~[/")(r,p,t)+6(e-eF)at ar
2:n:2fi3

J ~F(p,p')j<")(r,p',t) ]=0.x PFM' (2:n:fi)a

Here v = vF ( pi PF) is the velocity of the quasiparticles on
the Fermi surface, VF= (2sFIM*) 1/2,M* is the effective
mass of the quasiparticles,PF is the Fermi momentum, cF is
the Fermi energy, andF(p, p') is a constant in the amplitude
of the quasiparticle interaction expressed in the units 2rfz3 I
PFM*.

A particular solution of ( 1), which corresponds to the
propagation of a plane wave, has the form 1

/JP>(r, p, t) =6 (e-eF)v (p, k) exp (i (kr-wt»,

where k is the wave vector in the direction of propagation of
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the plane wave. Since according to (2) the quantity p is
fixed,F(p, p') depends only on the angle betweenp and p'. In
the standard expansion

F(p, p')=Fo+F,cos (p, p')+...,

we retain only the two components mentioned above. When
F1#0,

M'/M=1+F,/3

where M is the nucleon mass, 1-3and (1) has three branches
of solutions (2) corresponding to the values m = 0 and
m = :!: 1of the summation index in the expansion

cos(p,p')=(4:n:/3) L,y,:(p,k)Ylm(P',k).

The m = 0 branch, which corresponds to density oscilla-
tions, was studied in detail in Ref. 10. The branches
m = :!: 1, which are considered here, correspond to the os-
cillations of the current without change of the density. In
this case the function v(p, k) in (2) has the forml.2

( k)
cos (8Pk) sin (8pk)

(
. .

)v p, . = a,e'.pk+a-Ie-'.p" .
s-cos (8Pk)

(3)

Hereal and a_I are constants ands is the ratio of the veloc-
ity v(O)of the zero sound ofvF' The quantity s is related to the
constantFI in the interaction amplitude of the quasiparticles
by the equation

G (s) = (s/2) In «s+1) / (s-1» -1= (FI-B) / (3FI (s2-1»,

(4)
(1)

which has reals > 1solutions only whenFI > 6. The frequen-
cy of the oscillations is

w(O)=k(O)v(O)=sk(O)VF. (5)

For an infinite medium the solution (2 )-( 5) is a physical
one. Since ( 1) is a linear homogeneous equation, for a finite
system one can construct a solution by taking a superposi-
tion of the plane-wave solutions (2) in the form

/") (r, p, t) = S dkA (k, z)1;°)(r, p, t). (6)

(2)
HereA (k, z) isa weight function and z is the preferred direc-
tion in space. We are interested in the oscillations with fixed
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frequency; therefore, because of the relation between cuand k
in the dispersion relation (4) the integration in (6) will be
performed only over the angles of the vector k.

The density oscillations are

p(0)(r,t)=2S (2?n)JO)(r,p,t), (7)

Substituting (2), (3), and (6) into (7), we find thatp(O)(r, t)
vanishes for any weight function A (k, z),

Integrating the equation (I) over p, one obtains the
continuity equation, which in the absence of density oscilla-
tions has the forJ?J

div j(O)(r, t) =0,

with the current in the form

'(0) - 2 S dp (0)

J (r,t)- M (2nh)3Pj (r,p,t),

From (8) it follows that for any weight function A (k, z) the
currentj(O)(r, t) has a twist character.

Let us require that the current oscillations have an an--
gular dependence of a magnetic typeJ):

. ~ ~
J(O)(r, t) =R (r) [Yi,+i (r, z) - Yi,-i(r, z) ]exp (-iwt), (10)

where R (r) is a certain function and y\?~ I (r,z) are the
spherical vectors of the magnetic type. 11 For convenience we
have taken the time dependence in the form exp( - icut).
Substituting (6) into (9), taking into account that (9) satis-
fiesthe Helmholtz equations and Eq. (8), and making use of
the completeness and orthogonality of the spherical vectors,
we obtain

R(r)=a 321t2pp2(M'/M)i l/~ji(kr) ( (1-82)G(8)+~ )(21th) 3 V 3 3 '
(11 )

ai=-a-i=-a, A(k, z)=1.

Here jl (x) is the Bessel spherical function. Going over to
the systemofcoordinatesrotatedby the angleB= 1T/2(the
z' axis), we express the current (9), (10) in terms of a single
spherical vector:

- (0)
j(0)(r,t)=-1'2R(r)Yi,o (r,z'). (12)

This expression is more convenient for the analysis, The cur-
rent is related to the displacement in the following way:

fJ

j(O)(r, t) =p fit cS(O)(r, t),
(13 )

wherep is the nucleon density in the nucleus. From (10) and
( 13) it follows that the radial components ofthe current and
displacement are zero, Le., the oscillations under considera-
tion are transverse. For small displacements b(O)(r,t) one
can approximately define the twist angle OCr) of nuclear
matter at a given point as a ratio of the magnitude of the
displacement at this point to the distance of the point from
the center of the nucleus. From (12) we find the radial de-
pendence of the twist angle in the form

Q(r)=j,(kr)/r. (14)
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In order to find the value of the wave vector k we shall USe
the following boundary condition on the effectivesurface of
the nucleus suggested in Ref. 5:

dQ(r) I =~( h(kr) )I =0.dr '=R dr r '-R
(15)

(8)

Knowing k from the boundary condition, for FI > 6one can
determine the oscillation frequency cuwith the help of (5)
and the dispersion relation (4). For the quasiparticles in the
nucleus IFll;S I (Ref. 12), and for such values of the con-
stant the dispersion relation (4) has no solutions.

Let us now clarify the reason for examination of these
oscillations in Refs. 4-7. To this end we expand the exact
distribution function (2) in the multipolarity of the defor-
mation of the Fermi surface, which corresponds to the repre-
sentation ofv(p, k) in the form

(9)

v(p,k)=.E VlmY1m(P,k). (16)
lm

Following Refs. 6and 7, we truncate this series at 1= 2, and,
substituting the truncated series into the kinetic equation
(1), find the relation between V1.:tl and 'V2,:t1and obtain
the dispersion relation

82= (00(0)/k(O)vp) 2= (1 +Fi/3)/5. (17)

Note that this dispersion relation has a solution for
Fl> - 3, while the dispersion relation (4), obtained with
the exact distribution function of the zero sound, has a solu-
tion only when Fl > 6. Let us calculate the current and the
radial dependence of the twist angle with the help of the
truncated distribution function of the zero sound.

After algebra analogous to (2)-(12), we calculate the
current which has the same functional dependence on the
coordinates as ( 12). Therefore, the radial dependence of the
twist angle OCr) and the boundary condition coincide in the
cases of the exact distribution function of the zero sound and
the distribution function truncated at the quadrupole defor-
mation of the Fermi surface, while the dispersion relations
are significantly different. Setting Fl = 0 in (17) for the first
root of the equation (14), we find the oscillation frequency

1iw=1i(5.76/Y5R)1'2ep/M~142,5 «fm/R) .MeV. (18)

Here the values of the Fermi energy EF = 36.87 MeV corre-
sponds to the value p = 0.16 fm of the equilibrium density,
obtained in Ref. 5 with the help of the density-dependent
effectiveforces. It is this value of the oscillation frequency
that was obtained in Ref. 5,

Such a discrepancy between the results calculated with
the exact distribution function of the zero sound and the
function truncated at the quadrupole deformation of the
Fermi surface arises because the dispersion relation (7) has
a solution in the region Fl ,,6 of the values of the constant,
while the exact dispersion relation (4) has no solutions in
this region. The dispersion relation (17) was obtained by
truncation of the distribution function of the zero sound at
the quadrupole deformation of the Fermi surface. Therefore,
for realistic values of the constant Fl in the quasiparticle
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interaction amplitude the distribution function of the zero
sound may not be truncated and the isoscalar transverse
twist oscillations of the current are impossible.

To conclude, the author expresses his deep gratitude to
V. M. StrutinskiYfor numerous discussions of this work and
to V. I. Abrosimov, A. G. Magner, and R. V. Hasse for use-
ful comments.

IINote that here we restrict ourselves the twist oscillations of the current

whose angular dependence is described by the spherical vectors of the
multipolarity I = I. However, the main conclusion of the paper stems
from the dispersion relations (4) and (17) (see below).and does hold for
the I> I oscillations of the current, which have also been studied in Refs.
4 and 5.

'L. D. Landau, Zh. Eksp. Teor. Fiz. 32, 59 (1957) [SOy. Phys. JETP 5,
101(1957)].

2A. A. Abrikosov, and!. M. Khalatnikov, Usp. Fiz. Nauk66, 177 (1958)
[SOy. Phys. Usp. 1, 68 (1958)].

3D. Pines and P. Nozieres, The Theory of Quantum Liquids, W. A. Benja-
min, 1966. Russ. trans!.: Mir, 1967.

'c. Holzwarth and G. Eckart, Z. Phys. A283, 219 (1977).
sc. Holzwarth and G. Eckart, Nuc!. Phys. A325, 1 (1979).
6T. Yukawa and C. Holzwarth, Nuc!. Phys. A364, 29 (1981).
7T. Yukawa, Nuc!. Phys. A403, 298 (1983). .
By. M. Strutinsky, A. G. Magner, and M. Brack, Z. Phys. A318, 205
(1984).

9y. M. Strutinsky, A. G. Magner, and Y. Vu. Denisov, Z. Phys. in press.
JOy. M. Strutinskii, A. G. Magner, and Y. Vu. Denisov, Yad. Fiz. 39,1382

(1984) [SOy. J. Nucl. Phys. 39, 573 (1984)]; Z. Phys. A315, 301
(1984).

IlD. A. Yarshalovich, A. H. Moskalev, and Y. K. Khersonskii, Kuanto-
uaya teoriya uglouogo momenta (Quantum theory of angular momen-
tum), Leningrad, Nauka, 1975.

12A. B. Migdal, Teoriya konechnykh fermi-sistem i suo/stua atomnykh
yader (Theory of Finite Fermi Systems and Applications to Atomic Nu-
clei), Nauka, 1965. Trans!.: Interscience, 1967.

Translated by Gregory Toker


