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Abstract. The expression for polarized electric dipole moment of well-deformed reflection asymmetric
nuclei is obtained in the framework of the liquid-drop model in the case of geometrically similar proton
and neutron surfaces. The expression for polarized electric dipole moment consists of the first- and second-
order terms. It is shown that the second-order correction terms of the polarized electric dipole moment are
important for well-deformed nuclei.

1 Introduction

The reflection asymmetric deformation of the nucleus in-
duces proton-neutron redistribution. As a result, the pro-
ton or neutron density distributions become slightly po-
larized and reflection asymmetric in the nuclear volume.
Due to such density polarization the position of the proton
center of mass is shifted relatively to the nuclear center of
mass; therefore reflection asymmetric nuclei have polar-
ized electric dipole moment (PEDM).

The PEDM of nuclei with quadrupole and octupole
surface deformations was firstly obtained by V.M. Struti-
nsky in 1956 [1] in the framework of the liquid-drop model.
A short time later A. Bohr and B.R. Mottelson evaluated
the PEDM in the same model [2], but Strutinsky’s deriva-
tion is the correct one [3]. The PEDM was found for non-
axial nuclei with quadrupole and octupole deformations
in refs. [4,5]. Note that the PEDM discussed in refs. [1–5]
is only related to the proton-neutron polarization in the
volume of nuclei with quadrupole and octupole surface
deformations.

However, the proton-neutron density polarization in
the nuclear volume induces the variation of proton and
neutron radii and, therefore, leads to the corresponding
surface contribution into the PEDM. The expression for
PEDM with volume and surface contributions was derived
in ref. [6] in the framework of the droplet model for axial
nuclei with the proton radius Rp(θ) in the form

Rp(θ)

R0p
= F (θ) =

[

1 +

L
∑

ℓ=2

βℓYℓ0(θ)

]

. (1)

Here R0p is the proton radius of the spherical nucleus, βℓ

is the deformation parameter and Yℓ0(θ) is the spherical
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harmonic function. Both spherical and deformed nuclei
have a neutron skin of constant thickness in the frame-
work of the droplet model, see ref. [6] and papers cited
therein, therefore the neutron radius, Rn(θ), of deformed
nuclei is not proportional to the proton one, Rp(θ), in the
droplet model. Due to this, the expression for the PEDM
obtained in the droplet model consists of the volume and
surface charge redistribution contributions as well as the
contribution related to the neutron skin thickness [6,7].
The neutron skin thickness contribution arises precisely
from the non-coincidence of the centers of mass of a uni-
form skin and of the volume it encloses [6,7].

The expression for PEDM for nuclei with geometrically
similar proton and neutron surfaces, i.e. when proton and
neutron radii have the same angular dependence,

Rp(θ)

R0p
=

Rn(θ)

R0n
= F (θ), (2)

was obtained in ref. [8]. Here R0n is the neutron radius of
the spherical nucleus. The neutron skin thickness depends
on θ, when the radii of the proton and neutron surfaces
are proportional to each other. The PEDM consists of
the volume and surface charge redistribution contributions
only in this case [8], because the neutron skin thickness
contribution equals zero for geometrically similar proton
and neutron surfaces, see for details [7–9] and sect. 2. The
neutron skin center of mass coincides with the nucleus
one [8,9].

The expressions for volume and surface parts of the
PEDM for non-axial nuclei with arbitrary multipole defor-
mations and geometrically similar proton and neutron sur-
faces are given in ref. [10]. The equilibrium shapes of some
nuclei are non-axial reflection asymmetric [11]. Moreover,
PEDM can arise at non-axial reflection asymmetric sur-
face vibrations [10].
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We emphasize that the PEDM obtained in the first
non-zero order on multipole deformations of nuclear sur-
face is proportional to βℓβℓ+1 and all the expressions for

the PEDM presented in refs. [1–10] are derived in this
approximation.

The numerical study of the PEDM in well-deformed
nuclei in ref. [12] shows that the first approximation for
the PEDM is strongly underestimated with respect to the
numerical one. Moreover, the difference between the nu-
merical and first-order values of PEDM increases with the
values of deformation parameters strongly [12].

The values of PEDM have been also evaluated in the
frameworks of various semi-microscopic or microscopic ap-
proaches, see refs. [9,12–16] and papers cited therein.

Nuclei with quadrupole and octupole deformations, E1
transitions and the PEDM have been studied intensively
recently [17–26]. The PEDM plays an important role in
various phenomena of well-deformed reflection asymmet-
ric nuclei. Thus Karpeshin has shown that well-deformed
fission fragments of such shapes formed during prompt
fission give rise to both the anomalous E1 internal con-
version [27] and the prompt gamma radiation [28,29] re-
lated to the PEDM. The left-right asymmetry of the fis-
sion induced by polarized neutrons can be also linked to
the PEDM [30]. The E1 transitions possibly linked to oc-
tupole vibrations around super-deformed shape can be
also enhanced by the PEDM [31–35]. Strong E1 transi-
tions related to the low-energy shape oscillations of neg-
ative parity in the first and second (isomeric) minima in
actinides are also connected to the PEDM [36].

However the application of the expression for the
PEDM obtained in the first order for well-deformed nuclei
is questionable as pointed out by Skalski [12]. Therefore,
it is desirable to obtain an expression for the PEDM in
the next order at least, which is the second-order approx-
imation for the PEDM contained terms proportional to
βℓβℓ′βℓ′′ . Such expression should be helpful and practical

for the description of the various nature of the E1 transi-
tion in well-deformed nuclei.

The PEDM evaluated in the framework semi-micro-
scopic approaches [13,14] consists of macroscopic and mi-
croscopic contributions. The microscopic contribution of
PEDM is evaluated without applying the perturbation ap-
proach on the surface deformation parameters, while the
macroscopic one is evaluated by using the expressions ob-
tained in the first non-zero order on multipole deforma-
tions. Therefore a more accurate expression for the macro-
scopic part of the PEDM improves the accuracy of the
PEDM evaluated in the framework of semi-microscopic
models.

It is well known that shell effects are reduced in heated
nuclei. Due to this, the expression for PEDM has reliable
accuracy for highly excited fission fragments. The shape of
fission fragments after the rupture has an appreciable re-
flection asymmetry. The microscopic calculation of PEDM
in heated nuclei has not been done up to now. Therefore
the expression for the PEDM obtained in the next order
can at least be useful for the evaluation of the various
effects related to the dipole moment of fission fragments.

Various proposals on neutron skin are discussed re-
cently. The neutron skin of permanent thickness in de-
formed nuclei is widely applied in the framework of the
droplet model ([6,7] and other papers related to this
model). The neutron skin with thickness depending on
θ and related to the well-known and widely used relation
for the proton and neutron radii (2) is also very common
in nuclear physics; see, for example, the description of the
proton and neutron mean field radii etc. [9,12,14,37–44].
We emphasize that the shapes of potential and density dis-
tributions are geometrically similar due to a consistency
between the density distribution and the corresponding
mean-field potential [9]. A more complex approximation
to the neutron skin thickness related to different neu-
tron versus proton deformations of nuclei is discussed in
refs. [45,46]. The thickness of the neutron skin has a com-
plex angular dependence on θ in that case.

Diverse approximations for the neutron skin shape are
reasonable for small and medium deformed nuclei close to
the beta-stability line. The ratio (2) between the proton
and neutron radii is, probably, discussable for extremely
deformed and/or neutron-rich nuclei as pointed out in
ref. [7]. Current experimental studies of neutron distri-
bution on the surface of nuclei are devoted to the neu-
tron skin thickness in spherical nuclei mainly (see refs. [47,
48] and papers cited therein). The available experimental
data [47,48] cannot support firmly any of these approxi-
mations on the neutron skin thickness in deformed nuclei.

The relationship between proton and neutron surfaces
or the potential described by eq. (2) is very widely used in
nuclear physics for small, medium and even well-deformed
nuclei [9,12,14,37–44]. Therefore, in sect. 2 we derive the
expressions for the PEDM for the geometrically similar
proton and neutron surfaces, which take into account the
first (∝ βℓβℓ+1) and second (∝ βℓβℓ′βℓ′′) orders contribu-
tions. Discussion of the obtained expressions, numerical
results and conclusions are given in sect. 3.

2 Model and expression for the PEDM

Let us consider the axial nucleus with proton and neutron
radii described by eq. (2). There are no density polariza-
tions in spherical nuclei, therefore the equilibrium neutron
and proton density distributions in deformed nucleus can
be presented as ρn = ρ0n + δρn and ρp = ρ0p + δρp. Here

ρ0n = 3N/(4πR3
0n) and ρ0p = 3Z/(4πR3

0p) are the equilib-

rium neutron and proton densities in the spherical nucleus,
δρn and δρp are the variations of neutron and proton den-

sities induced by surface deformation, Z and N are the
numbers of protons and neutrons in the nucleus.

Due to the high value of nuclear matter incompress-
ibility, the total nuclear density ρ = ρn +ρp in the nuclear
volume is constant ρ = ρ0n + ρ0p, therefore δρn = −δρp

(see also [1,8]).
We should take into account that the numbers of pro-

tons and neutrons in deformed nucleus are, respectively, Z
and N ; the center of mass must lie in the plane of mirror
symmetry of the nucleus [1,8,9], because the reflection
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asymmetric nuclear shapes are coupled by a sub-barrier
tunnel transition. These two conditions can be easy ful-
filled by the introduction of auxiliary monopole β0 and
dipole β1 deformations, i.e.

Rp(θ)

R0p
=

Rn(θ)

R0n
= F (θ) + β0Y00(θ) + β1Y10(θ)

= f(θ) = 1 +
L

∑

ℓ=0

βℓYℓ0(θ). (3)

The values of β0 and β1 are, correspondingly, determined
by the equations

∫

dV
ρ0p

Z
=

∫

dV
ρ0n

N
=

1

2

∫ π

0

dθ sin (θ)f(θ)3 = 1, (4)

∫

dV r cos (θ)(ρ0p + ρ0n) =
3

8
(ZR0p + NR0n)

×
∫ π

0

dθ sin (θ) cos (θ)f(θ)4 = 0. (5)

For the sake of simplicity we take into account the most
important multipole deformations of the nuclear surface
β2, β3, β4, β5, β6. The expressions for β0 and β1 taking
into account all quadratic and cubic terms on β2, β3, β4,
β5, β6 can be directly obtained from eqs. (4) and (5),
however the corresponding equations are cumbersome and
therefore not presented here.

The PEDM is defined as

D ≡ e

∫

dV r cos (θ)ρp. (6)

Due to the deviation of the nuclear surface from the
spherical form there are variations of the proton density
in the nuclear volume δρp(r). The variation of nucleon
density in the nuclear volume induces the deviation of
the proton radius δRp(θ) from the equilibrium position
on the nuclear surface. The proton radius variation in-
duces proton density variations in the volume δRp(θ)ΔS,
where ΔS is the element of surface square. Therefore, the
PEDM in reflection asymmetric nuclei with axial symme-
try is related to the redistribution of protons relatively to
neutrons in the nuclear volume and on the nuclear surface
(see also [6,8]),

D = Dv + Ds, (7)

where

Dv ≈ e

∫

dV r cos (θ)[ρ0p + δρp] = e

∫

dV r cos (θ)δρp

= 2πe

∫ π

0

dθ sin (θ) cos (θ)

∫ R0pf(θ)

0

dr r3δρp, (8)

Ds ≈ e

∫

dS Rp(θ) cos (θ) ρ0p δRp(θ)

=
3Ze

2

∫ π

0

dθ sin (θ) cos (θ)

[

1 +

(

f ′(θ)

f(θ)

)2
]1/2

×f3(θ)δRp(θ). (9)

Here eq. (5) is taken into account upon simplification of

eq. (8) and f ′(θ) = df(θ)
dθ . So, the volume part of the

PEDM is related to the volume integral and density vari-
ation in the nuclear volume δρp while the surface part is
determined by the surface integral and the proton radius
variation δRp(θ).

The proton (or neutron) density variation induced by
surface deformation produces additional pressure on the
free nuclear surface. Due to this pressure, the position of
the corresponding surface is slightly shifted. Both the sur-
face symmetry energy and the Coulomb force counteract
the surface shift and neutralize the additional pressure on
the free nuclear surface induced by density variations, see
for details [6,8,10]. The normal to the surface variation of
the proton radius is defined by the boundary condition [6,
8,10], which equalizes the normal to surface pressures in-
duced by density fluctuations, neutron-skin stiffness and
the Coulomb interaction, and is equal to

δRp(θ) = −N

A

3eR0

8QA1/3

[

φ(Rp(θ))−
∫

dSφ(Rp(θ))
∫

dS

]

= −N

A

3eR0

8QA1/3

[

ϕ(Rp(θ))−
∫

dSϕ(Rp(θ))
∫

dS

]

, (10)

where Q is the neutron-skin stiffness coefficient [6,10],
φ = ϕ − ϕ, ϕ(r) is the Coulomb potential related to the

protons, ϕ =
R

dV ϕ
R

dV
is the average potential value in the

nucleus and A = Z+N . Note that ZδRp(θ)+NδRn(θ)=0,

because the center of the mass must lie in the plane of mir-
ror symmetry of the nucleus, i.e.

∫

dV r cos (θ) ρ(r)

=

∫

dV r cos (θ) [ρ0p + δρp + ρ0n + δρn]

+

∫

dS cos (θ) [Rp(θ)ρ0pδRp + Rn(θ)ρ0nδRn]

=

∫

dV r cos (θ) [δρp + δρn]

+

∫

dS cos (θ) [Rp(θ)ρ0pδRp + Rn(θ)ρ0nδRn]

=

∫

dS cos (θ) [Rp(θ)ρ0pδRp + Rn(θ)ρ0nδRn]

≈
∫

dS cos (θ) Rp(θ)[ρ0pδRp + ρ0nδRn] = 0.

Here eq. (5) and the condition δρp = −δρn are taken into
account.

If we know δρp(r) and ϕ(r) than we can evaluate the

PEDM using eqs. (7)–(10). Let us find δρp(r) and ϕ(r)

in the framework of the liquid-drop model. The energy
density functional, which describes the density distribu-
tion in the nuclear volume, can be written in a simple
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form [1,8,10]

E ≈ −avρ + J
(ρn − ρp)

2

ρ
+ eρpϕ

= −avρ + J
(ρ − 2ρp)

2

ρ
+ eρpϕ, (11)

where −av is the bulk energy per nucleon in symmetric nu-
clear matter and J is the volume symmetry energy. Note
that the energy density functional of the droplet model
contains the dilatation term [6], but the parameter L re-
lated to the dilatation term is equal to zero in the recent
parameter set of the droplet model [6], therefore we ne-
glect the dilatation term here. The nucleus energy E is
related to the energy density functional E =

∫

dV E . The
equation determining the equilibrium distribution of the
charge in the nuclear volume can be obtained by the vari-
ation of the energy

δE = δ

∫

dV [E − λρp] (12)

=

∫

dV [−4J(ρ − 2ρp)/ρ + eϕ − (av + λ)] δρp,

in δρp with the additional condition of number of proton
conservation in the nucleus. As a result, we get

8Jρp = −ρ(eϕ − 4J − λ′), (13)

where λ′ = av + λ and λ is the Lagrangian coefficient
related to the additional condition. The solution of this
equation is

ρ0p = ρ

(

1

2
+

λ′

8J
− eϕ

8J

)

= (ρ0p + ρ0n)

(

1

2
+

λ′

8J
− eϕ

8J

)

, (14)

δρp =
−eρ(ϕ − ϕ)

8J
=

−e(ρ0p + ρ0n)(ϕ − ϕ)

8J

=
−3eA(ϕ − ϕ)

32πR3
0pJ

=
−3eAφ

32πR3
0pJ

. (15)

Note that
∫

dV δρp = −3eA
32πR3

0p
J

[ ∫

dV (ϕ − ϕ)
]

= 0. We ne-

glect the difference between R0p and R0n at the evaluation
of volume quantities.

The electric potential can be found by using the Pois-
son equation

∇2ϕ = 4πeρp. (16)

Substituting (15) into (8) and taking into account (5)
we get

Dv ≈ −3e2A

16JR3
0p

∫ π

0

dθ sin (θ) cos (θ)

∫ R0pf(θ)

0

dr r3φ(r)

=
−3e2A

16JR3
0p

∫ π

0

dθ sin (θ) cos (θ)

∫ R0pf(θ)

0

dr r3ϕ(r).

(17)

Using (10) and the approximation NZ
A ≈ A

4 , see ref. [6],
we rewrite (9) in the form

Ds ≈ − 9Ae2R0

64QA1/3

∫ π

0

dθ g(θ) cos (θ)f(θ) (18)

×
[

ϕ(Rp(θ)) −
∫ π

0
dθ′ g(θ′)ϕ(Rp(θ

′))
∫ π

0
dθ′ g(θ′)

]

,

where g(θ) = sin (θ)f2(θ)[1 + (f ′(θ)/f(θ))2]1/2. So, the

volume (17) and surface (18) parts of PEDM are deter-
mined by the Coulomb potential ϕ(r).

The Coulomb potential of the deformed nucleus is

ϕ(r) = e

∫

dV
ρp(r

′)

|r − r
′| = e

∫

dV
ρ0p + δρp(r

′)

|r − r
′| . (19)

This potential satisfies eq. (16).
It is possible to find the potential ϕ(r) by applying

the perturbation theory to eqs. (14), (15) and (19). We
expand the potential and the variation of proton density
into the perturbation series

ϕ(r) = ϕ0(r) + ϕ1(r) + ϕ2(r) + . . . , (20)

δρp(r) = δρ0
p(r) + δρ1

p(r) + δρ2
p(r) + . . . , (21)

where the superscript corresponds to the number-of-per-
turbation approach. The corresponding solution for the
Lagrangian coefficient is the variation of proton density
into the perturbation series

λ = −av + 8J
[

Z/A − 1/2 + e/(8J)
(

ϕ0(r)

+ϕ1(r) + ϕ2(r) + . . .
)]

.

Substituting the perturbation series (20)-(21) into
eqs. (15) and (19) we get

δρk
p(r) =

−eρφk(r)

8J
=

−3eAφk(r)

32πR3
0pJ

, for k ≥ 0, (22)

ϕk(r) = e

∫

dV
δρk−1

p (r′)

|r − r
′| , for k ≥ 1, (23)

and

ϕ0(r) = e

∫

dV
ρ0p

|r − r
′| =

eZ

R0p

∫

dV
3

4πR2
0p|r − r

′|

=
eZ

R0p

∑

ℓ

6πYℓ0(θ)

(2ℓ + 1)

∫ π

0

dθ′ sin(θ′)Y ∗

ℓ0(θ
′)

×
[

∫ r

0

dr′
(r′)ℓ+2

rℓ+1(R0p)2
+

∫ R0pf(θ′)

r

dr′
(r)ℓ

(r′)ℓ−1(R0p)2

]

,

(24)

where φk(r) = ϕk(r) − ϕk(r).
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Fig. 1. Experimental and theoretical values of the PEDM
as well as macroscopic and microscopic contributions to the
PEDM for Th isotopes. Points are experimental data from
refs. [13,25,26]. For details on theoretical lines see the text.

Using eqs. (22) and (23) we get the recurrent equation
for ϕk(r) at k ≥ 1

ϕk(r) =
−3e2A

32πR3
0pJ

∫

dV
φk−1(r′)

|r − r
′|

=
−e2A

R0pJ

∑

ℓ

3πYℓ0(θ)

4(2ℓ + 1)

∫ π

0

dθ′ sin(θ′)Y ∗

ℓ0(θ
′)

×
[
∫ r

0

dr′
(r′)ℓ+2φk−1(r′)

rℓ+1(R0p)2

+

∫ R0pf(θ′)

r

dr′
(r)ℓφk−1(r′)

(r′)ℓ−1(R0p)2

]

, (25)

which determines the potential with any necessary de-
gree of accuracy. As a result, we can evaluate the vol-
ume and the surface contributions of the PEDM using
eqs. (17), (18), (20), (24) and (25).

The macroscopic PEDM can be written as

Dmacro = Dv1 + Dv20 + Dv21 + Ds1 + Ds20 + Ds21, (26)

where

Dv1 =
e3AZ

πJ

[

9β2β3

56
√

35
+

11β3β4

105
√

7

+
41β4β5

264
√

11
+

441β5β6

715
√

143

]

, (27)

Ds1 =
15e3A2/3Z

8πQ

[

9β2β3

56
√

35
+

11β3β4

105
√

7

+
41β4β5

264
√

11
+

441β5β6

715
√

143

]

(28)

are the volume and surface first-order contributions,

Dv20 =
e3AZ

π3/2J

[

3β2
2β3

56
√

7
+

789β2
2β5

8624
√

11
+

48721β2β3β4

101640
√

35

+
65685β2β3β6

44044
√

455
+

1658135β2β4β5

2186184
√

55
+

35403β2β5β6

11440
√

715

+
3β3

3

88
√

7
+

19557β2
3β5

104104
√

11
+

27147β3β
2
4

220220
√

7

+
657095β3β4β6

528528
√

91
+

141723β3β
2
5

1041040
√

7
+

110793
√

7β3β
2
6

5348200

+
245625β2

4β5

1457456
√

11
+

46892β4β5β6

36465
√

143
+

327β3
5

5746
√

11

+
64461β5β

2
6

369512
√

11

]

, (29)

Ds20 =
e3A2/3Z

π3/2Q

[

297β2
2β3

2240
√

7
+

20277β2
2β5

68992
√

11

+
80181β2β3β4

54208
√

35
+

2047545β2β3β6

352352
√

455

+
16455195β2β4β5

5829824
√

55
+

252207β2β5β6

18304
√

715
+

81β3
3

704
√

7

+
56025β2

3β5

75712
√

11
+

177669β3β
2
4

352352
√

7
+

8432595β3β4β6

1409408
√

91

+
1113129β3β

2
5

1665664
√

7
+

1037259
√

7β3β
2
6

8557120
+

9802305β2
4β5

11659648
√

11

+
299061β4β5β6

38896
√

143
+

31455β3
5

91936
√

11
+

3679965β5β
2
6

2956096
√

11

]

,

(30)

are the volume and surface second-order contributions re-
lated to the ϕ0(r) contribution (see eqs. (17), (18), (20),
(24)), and

Dv21 = −e5A5/3Z

πJ2r0

[

477β2β3

15680
√

35
+

3719β3β4

194040
√

7

+
176933β4β5

6342336
√

11
+

627219β5β6

5725720
√

143

]

, (31)

Ds21 = −e5A4/3Z

πJQr0

[

459β2β3

7840
√

35
+

9623β3β4

258720
√

7

+
32881β4β5

604032
√

11
+

702081β5β6

3271840
√

143

]

(32)

are the volume and surface second-order contributions
connected to the ϕ1(r) contribution (see eqs. (17), (18),
(19), (25)), r0 = R0p/A

1/3. This expression of the PEDM

is obtained with the help of the symbolic computation
software Mathematica.
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Fig. 2. Dependencies of the total macroscopic PEDM eval-
uated in the first D1macro and second Dmacro orders on the
quadrupole β2 deformation as well as the same dependencies
of contributions Dv1, Dv20, Dv21, Ds1, Ds20, and Ds21 to the
PEDM. The quadrupole and octupole deformations of 220Th
are only taken into account.

We propose at evaluation of the PEDM that ratio of
potentials ϕ1(r)/ϕ0(r) is of the same order as βℓ, therefore
we take into account terms proportional to the product of
the deformations βℓβℓ′ in Dv21 or Ds21 and neglect the
next-order terms βℓβℓ′βℓ′′ . This proposal is natural for
the hierarchy of solutions in the form of the perturbation
series.

The first term in eq. (27) was obtained in refs. [1,3],
eqs. (27) and (28) were derived in refs. [6,8], and eqs. (29)–
(32) are found for the first time.

3 Discussion and conclusions

The total value of the PEDM, Dtot, is the sum of the
macroscopic, Dmacro, and the microscopic, Dmicro, shell-
correction contributions [9,14,12] calculated for the same
shapes of the proton and neutron surfaces [9], i.e.

Dtot = Dmacro + Dmicro. (33)

Fig. 3. Dependencies of the total macroscopic PEDM eval-
uated in the first D1macro and second Dmacro orders on the
octupole β3 deformation as well as the same dependencies of
contributions Dv1, Dv20, Dv21, Ds1, Ds20, and Ds21 to the
PEDM. The quadrupole and octupole deformations of 220Th
are only taken into account.

The macroscopic part of the PEDM can be evaluated by
using eqs. (26)–(32).

The total values of the PEDM evaluated in the frame-
work of various models are compared with the experimen-
tal data for thorium isotopes in fig. 1. The experimen-
tal data are taken from refs. [13,25,26]. Our calculation
of the macroscopic part Dmacro is done with the help of
eqs. (26)–(32) using the recent parameter values of the
droplet model J = 32.5MeV, Q = 29.4MeV, r0 = 1.16 [6].
The values of the multipole deformation parameters βℓ

and the microscopic part of PEDM, Dmicro, are taken from
ref. [14]. The results obtained in our model well agree with
the experimental data for 220−228Th, see fig. 1. The total
values of the PEDM calculated by Butler and Nazarewicz
using the droplet model approach for the macroscopic part
Dtot BN = Dmacro DM +Dmicro [14] are shown in fig. 1, too.

The results of the droplet model approach underestimate
the experimental data for 223−228Th, see fig. 1. The values
of the PEDM obtained in the framework of the cranking
Skyrme-Hartree-Fock approach DSHF [15] are also pre-
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Fig. 4. The same as fig. 2, but taking into account also the
high-order multipole deformations β4, β5 and β6 of 220Th.

sented in fig. 1. The values of the PEDM evaluated in
the cranking Skyrme-Hartree-Fock model underestimate

the experimental data for 222−227Th and overestimate the
ones for 229,230Th. The comparison of the PEDM values
calculated in the framework of various models with the ex-
perimental data for thorium isotopes in fig. 1 suggest that
our proposal, i.e. that the proton and neutron surfaces are
geometrically similar (see eq. (2)), is reasonable.

The values of the macroscopic part of the PEDM eval-
uated in our model Dmacro are larger than the ones ob-
tained in the framework of the droplet model Dmacro DM,

see fig. 1 and refs. [6–9]. Comparing the results in fig. 1 we
conclude that the microscopic contribution to the PEDM
Dmicro is smaller than the macroscopic one Dmacro.

Let us study the role of second-order contributions in
the macroscopic part of the PEDM in well-deformed nu-
clei. We consider first nuclei with quadrupole and octupole
deformations. Here we neglect the microscopic part of the
PEDM for simplicity. The dependence of the PEDM on
the quadrupole deformation value at a fixed value of the
octupole deformation is presented in fig. 2, while the de-
pendence of the PEDM on the octupole deformation value
at a fixed value of the quadrupole deformation is presented
in fig. 3. Fixed values of quadrupole or octupole deforma-

Fig. 5. The same as fig. 3, but taking into account also the
high-order multipole deformations β4, β5 and β6 of 220Th.

tions are pointed out in figs. 2-3. These values of the de-
formation parameters are typical for the ground state of
reflection asymmetric actinides [14].

The macroscopic PEDM consists of six contributions,
Dv1, Dv20, Dv21, Ds1, Ds20, and Ds21, see eqs. (26)–(32).
Contributions of all these terms to the PEDM as well as
the total first- and second-orders macroscopic PEDM val-
ues are shown in figs. 2-3. Comparing the various lines in
figs. 2-3 we conclude that:

– The total first-order contribution of the PEDM,
D1macro = Dv1 + Ds1, is mainly determined by the
value of the PEDM at small values of the deformation
parameters. The influence of the second-order terms
rises with the values of the deformation parameters.

– Contributions Dv1, Ds1, D1macro, Dv21, and Ds21 of
the PEDM depend linearly on the variation of the de-
formation parameter β2 or β3 , while Dmacro, Dv20 and
Ds20 depend quadratically on the variation of the de-
formation parameter β2 or β3.

– The surface contribution of any type is approximately
twice as small than the volume contribution of the
same type. (Note that this conclusion depends on the
ratio between the values J and Q. We would like to
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remind that we use the same values of J and Q as in
the droplet model at the PEDM evaluation, but some
authors [6,14,12] use other J and Q values to describe
the PEDM experimental data.)

– The terms Dv21 and Ds21 related to the Coulomb po-
tential correction ϕ1 give negative contributions to the
PEDM, while any other contribution is positive.

– The absolute values of the terms Dv21 and Ds21 are
similar to the ones for the terms Dv20 and Ds20. This
supports our proposal on the hierarchy of solutions of
the perturbation series.

– The contribution of the second-order terms Dv20 +
Dv21 + Ds20 + Ds21 gives a small correction for the
case of variable quadrupole and fixed octupole defor-
mations (see fig. 2). However this contribution notice-
ably enhances the value of the PEDM at large octupole
deformation in the case of variable octupole and fixed
quadrupole deformations (see fig. 3). The total PEDM
evaluated at large octupole and fixed quadrupole de-
formations is larger than the one for large quadrupole
and fixed octupole deformations.

Nuclei with reflection asymmetry have also non-zero
values of high-order multipole deformations [12,14]. De-
pendencies of macroscopic PEDM on the value of the
quadrupole and octupole deformation at fixed values of
the other deformations are presented in figs. 4 and 5, re-
spectively. Values of fixed high-order multipole deforma-
tions parameters pointed out in figs. 4-5 are typical for
the ground state of reflection asymmetric actinides [14].

The values of high-order multipole deformations are
smaller than the ones for quadrupole or octupole defor-
mations as a rule [12,14]. Nevertheless, high-order multi-
pole deformations enhance the value of the PEDM notice-
ably, compare results presented in figs. 2-5. The influence
of second-order terms is also strengthened by high-order
multipole deformations.

Qualitatively similar results related to the influence of
second-order contribution on the PEDM were obtained
numerically in ref. [12], but the contributions Dv21 and
Ds21 related to ϕ1 were skipped in this work. Note that
Skalski [12] evaluated the macroscopic part of the PEDM
for the case of constant neutron skin (the droplet model
approach). As pointed out in the introduction, the PEDM
evaluated in the framework of the droplet model has ad-
ditional contribution related to the difference between the
center of mass of the neutron skin of uniform thickness
and the center of mass of the nucleus, which reduces the
value of the PEDM induced by density redistribution [6],
compare also lines denoted as Dmacro and Dmacro DM in
fig. 1. This neutron skin contribution to the PEDM is
zero in the case of neutron skin formed by geometrically
similar neutron and proton surfaces. Therefore, numeri-
cal comparison of our and Skalski’s results cannot show
the difference between the first- and second-order contri-
butions to the PEDM obtained in various approaches, be-
cause the comparison shows mainly the difference related
to the neutron-skin contribution.

We evaluated the PEDM of the hyperdeformed state
of 152Dy. The values of the deformation parameters of
152Dy in the hyperdeformed state are β2 = 0.61, β3 = 0.1,

β4 = 0.11, β5 = 0.05 and β6 = 0 [12]. The values of the

macroscopic part of the PEDM obtained in the first and
second orders using eqs. (26)–(32) are Dmacro = 0.67 e fm
and D1macro = 0.46 e fm, respectively. The microscopic
shell-correction part of the PEDM evaluated for geomet-
rically similar proton and neutron surfaces is Dshell =
−0.34 e fm [12]. As a result the total values of the PEDM
found by applying the first- and second-order calculation
of the macroscopic part of the PEDM are Dmacro+Dshell =
0.33 e fm and D1macro + Dshell = 0.12 e fm, respec-
tively. Note that the total value of the PEDM evalu-
ated using the exact numerical calculation of the macro-
scopic contribution in the framework of the droplet model
is Dmacro Skalski + Dshell = 0.06 e fm [12]. Hereby, the
PEDM depends strongly on the second-order terms in
well-deformed nuclei as well as on the neutron skin shape.

In conclusion, the expression for macroscopic PEDM
taking into account the first- and second-order terms in
the parameters of multipole deformations is obtained in
the case of geometrically similar proton and neutron sur-
faces of reflection asymmetric nuclei.

The second-order terms are important at large values
of the deformation parameters. The second-order terms
are especially important for the nuclear shape with non-
zero values of high-order multipole deformation parame-
ters.

The second-order contributions Dv20 and Ds20 enlarge
the value of the PEDM obtained in the first order. In con-
trast to this, contributions Dv21 and Ds21 decrease the
value of the PEDM obtained in the first order. Compen-
sation of these contributions into the PEDM value oc-
curs at small deformation values. However the contribu-
tion Dv20 + Ds20 to the PEDM value is larger than con-
tributions Dv21 + Ds21 at large values of the deformation
parameters.

The reduced probabilities of dipole transitions B(E1)
are measured in various experiments [13,22–26]. Note that
B(E1) is proportional to the squared value of the PEDM
D2 [13,17–21]. Therefore, the second-order contribution
to the PEDM leads to significant variation of B(E1) in
well-deformed nuclei.

The obtained expression can be easily applied for the
estimation of the macroscopic PEDM and strength of
dipole transition probabilities in various well-deformed nu-
clei.

The author thanks Prof. F.F. Karpeshin for stimulating dis-
cussions.
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