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Density distribution across the nuclear surface is obtained in the approximation of 
relatively sharp nuclear edge. It is used to determine dynamical parts of the density 
relevant to density vibration resonances. Results of the simple calculations are in close 
agreement with detailed microscopic theories. 
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I. Introduction 

Simple and accurate solution of some problems in- 
volving nuclear density distributions uses the notion 
of an effective sharp surface [1, 2]. It exploits the 
property of saturation, which is a characteristic fea- 
ture of nuclei. The realistic energy density distribu- 
tion is minimal at a certain density of nucleons 
corresponding to infinite matter [3]. As a result, rela- 
tively narrow edge region exists in finite nuclei in 
which the density drops sharply from its central 
value to zero. The effective surface is introduced 
according to locations of points of maximal density 
gradient. Position of the surface may vary in time in 
accordance with dynamics of the density distribu- 
tion. The coordinate system related to the surface is 
defined in such a way that one of the spacial coor- 
dinates (~) is the distance from the given point to the 
surface. This coordinate system is conveniently used 
in the region of nuclear edge allowing for an easy 
extraction of relatively large terms in the density 
distribution equations. Neglecting the other contri- 
butions, sum of such terms leads to a simple one- 
dimensional equation (in spacial coordinates, at 
least) which determines approximately the density 
distribution in the region of diffused nuclear surface. 
When this edge distribution of the density is known 
static and dynamical density distributions which cor- 
respond to diffused surface conditions can be easily 
constructed. To do so, one has, however, to de- 
termine the dynamics of the effective surface which 
is coupled to volume dynamics of the density by 

certain boundary conditions [2, 4]. It is of interest 
to check the accuracy of effective surface approxima- 
tion by compairing the results with the existing de- 
tailed - and uncomparably more involved - theories. 

2. Stat ics  

The total energy is represented in the form 

•(p)= -bvp+ ps(p)+ @+~p ) (Vp)Z +~cAp, (1) 

where by is the energy of separation of a particle in 
the infinite matter, b~, /~, y and • are positive con- 
stants. Being a function of local density p, s(p) corre- 
sponds to saturation condition, 

de(~)/dp =0. (2) 

The quantity fi is the equilibrium density for nuclear 
matter and, according to its definition in (1), 

~(p)=o. (3) 

In addition, the particle binding energy in uniform 
matter should equal zero at p ~ 0, 

-b~+e(O)=O. (4) 

The equilibrium density distribution is determined 
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by variational Lagrange equation 

d A p + +  =0, (5) d - p ( P e ( P ) ) - 2 ( f l + + )  (Vp)2 + 2 

in which 2 is the Lagrange factor for the condition 
that the total number of particles A is fixed. It 
represents a finite size correction to separation en- 
ergy. Note, that the presence of A p-term in (1) does 
not affect the equilibrium density distribution. In the 
nuclear volume terms of (5) containing derivatives of 
p are small. They are large near the nuclear edge 
where the ~-coordinate can be conveniently used. 
The largest terms in the equation are in this region 
proportional to 1/a 2 where a is the thickness of the 
diffused edge and by requiring that their sum should 
vanish the following equation is obtained after some 
transformations [2], 

dp/dr = -2psl /2(p)(4f lp + ?)- 1/2. (6) 

(4 = + oo at large distances and ~ = 0 at the surface.) 
It determines the density distribution in the edge 
region across the effective surface. The shape of the 
surface is arbitrary so far. It is only required that a 
should be small in comparison with the local value 
of the mean curvature radius of the surface. To 
determine the surface part of the total energy one 
writes the total energy corresponding to (1) as 

E = -b~ A + ~ d 3 r[p e (p) + (fl + 7/4 p)(Vp) z] (7) 

and, taking (6) into account, it is noted that both 
items in square brackets contain (dp/d~) 2 which be- 
comes large in the edge region. Keeping only such 
terms provides a sufficient accuracy: More accurate 
approximations would lead to A1/3-terms in energy 
which are of no significance here. The two items in 
the integral in (7) produce then equal contributions 
and the integral itself can approximately be ex- 
pressed as a surface integral taken across the surface 
of maximal density gradient. It is obtained, then, 

E=E,~+Es+O(A 1/3) 

where 

Ev= - b v A  (8) 

is the volume energy and the surface energy is 

E~ = aS, (9) 

where S is the area of the effective surface. The 
surface tension constant 

+co 

or=2 ~ d~(fl+7/4p)(dp/d~) 2, (10) 
-oo 

where the derivative is taken along perpendicular to 
the surface and the integration is also performed in 
this direction, see also in [2, 5]. It can be noted 
that unambigous definition of the surface energy can 
be given only within this semi-classical model. It 
cannot be obtained, for example, in Hartree-Fock 
derivations when the energy (7) contains single-par- 
ticle shell effects. In such cases averagings can be 
applied such as used in shell correction calculations 
[6]. Otherwise the surface energy term can be se- 
riously misestimated. 
Terms in (1) and (7) containing parameters 7 and ~c 
appear there as quantal corrections to the Thomas- 
Fermi kinetic energy, and are both proportional to 
h 2. So ,  

h 2 

Y=]Sm (11) 

where m is the nucleon mass. The amplitude of this 
term is known to be too small to reproduce the 
empirical surface energy. The presence of the other 
surface term which is not singular at p-~0 is pre- 
sently argued on the ground of some Skyrme-force 
arguments. It is believed, however, that such a term 
presents a general macroscopic feature of any dense 
system of particles. In this way a non-local com- 
ponent of energy density is represented due to in- 
teraction of adjacent volume elements of different 
densities. If so, it needs not to be necessaryly related 
to the Skyrme-force approach. The volume part, 
e(p), can also be determined from general arguments 
with a sufficient accuracy, particularly in view of the 
fact that - as these calculations also show - many 
essential results are not sensitive to the specific form 
of e(p). 
For further derivations it is convenient to use de- 
mensionless quantities by writting 

p = ~ y  (12) 

and 

e(p)=bve(y), (13) 

where e(y) is dimensionless, in contrast to e(p). The 
unit of distance is 

a = (4fip/b~) 1/2 = (3 fi/~z rg by) 1/2, (14) 

where r o is defined by relationship 

p = 3/4~r 3. (15) 

Equation (6) takes then the form 

dy(x)/dx = - 2 y  ~.l/2(y)/(C "~ y)l/2, X = ~/a, (16) 
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and it contains dimensionless parameter 

c = y/4/3p = 2.41 r3//3, (17) 

see (11, 15). The energy here is expressed in MeV 
and distance is in Fermis. Values of c fitting the 
surface energy are small (c<0.1) and it makes it 
possible to  obtain particularly simple analytical so- 
lution which is described below. With the phenome- 
nological values [7] of b~= 16 MeV and r o = 1.2 fm 
(p=0.15 fm -3) one has 

c=4.0 / / -1 ,  (18) 

and 

a=0.19//1/2 fro. (19) 

The sUrface energy is determined by parameter 

b s = 4 ~t r 2 a = (27 b v///4 rc roS) 1/2 j ,  (20) 

where 

+ o o  

J= S dx(dy(x)/dx)2(l+c/y) 
- - o o  

1 

= 2 S dy(c + y)a/2 el/2 (y). (21) 
o 

Solution y(x) to (6) which is of interest to us turns 
into zero asymptotically (or exactly, if c = 0) at some 
positive value of x off the nuclear surface. The sur- 
face itself is positioned at x = 0 and is determined by 
the condition that the density gradient is maximal 
there, that is, 

d2 y (O)/d x 2 = O. (22) 

From this condition and (16) some algebraic equation 
is obtained which determines a certain value of y 
= Yo corresponding to maximal gradient, 

S(yo)(2c + Yo) + (c + Yo) Yo de(yo)/d y = O. 

The equation is resolved numerically for any given 
s(p) and it provides then the boundary condition, 

y(0)=Y0, (23) 

which determines uniquely the sought physical so- 
lution to (5, 16). 
For  small values of c such as are of interest to 
applications the solutions depend weekly on this 
parameter. Another significant feature of solutions 
is their remarkable insensitivity to details of s(p). As 
a result, solutions to (16) turn out to be close to a 
certain universal shape function, see Fig. 1. The fat 
lines there show the shape function y(x) determined 

-2 zc 0 t 

Fig. 1. Shaded regions represent solutions to (16) for various 
versions of effective energy density function s(y) derived with 
values of fl currently attached to each version (c<0.1). Thin lines 
correspond to e=0.2. Fat  lines correspond to parabolic e(y), see 
(24) and broken lines correspond to asymptotic solution (25). 
They can be accepted as universal practical solutions 

for parabolic 

s(y) =(1 _y)2. (24) 

Closed form solution for y(x) corresponding to this 
case can be found if either/3 or c equals zero. For c 
=0  (version Par) one has 

y ( x ) = t h 2 ( x - 0 . 6 5 8 ) ,  (25) 

where the boundary condition (22, 23) is satisfied. 
This solution turns into 1/3 at the maximal gradient 
point at x = 0  and is identically zero for x>0.658. 
Parabolic 

s(p) = (K/18 ~2)(p _ fi) 2 (26) 

determines, by means of (4), the compressibility 
modulus K as related to phenomenological binding 
energy parameter b v, namely, 

K = 18 b~, (27) 

and its value K = 2 9 0  MeV found in this way agrees 
with what is obtained from fitting the monopole 
resonance energies in the first-sound model. 
Equation (25) can be compared with the Thomas- 
Fermi quantity (/3=0 and c=co)  which, for para- 
bolic s(p), is 

p (r) = fi(1 + exp ((r - R)/e))-  1, (28) 

where 

.=�89 '/2, 

see also [7, 8]. The gradient of p is maximal at r 
= R ,  w h e r e  1 - p = ~ p ,  and dp/dr  is symmetric relative 
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to this point. The surface energy parameter is now 

b~=~(bv~)t/Z/ro (29) 

and it equals 7.6 MeV (i.e., too little) for the stan- 
dard value of b, = 16 MeV. 
Very specific feature of solutions to (16) at smaller c- 
values is the asymmetry of y'(x)  relative to the maxi- 
mum point at x = 0 :  The density approaches its cen- 
tral value significantly more slowly than zero off the 
surface. It might seem to be the result of relative soft- 
ness of nuclear matter in the volume but it is not the 
case. This asymmetry of y'(x)  is the consequence of 
the form of surface term in (1) at f l#0.  It can be 
seen, particularly, in comparison with the Thomas- 
Fermi case (fl=0), when y'(x)  is either exactly (for 
(28)) or nearly symmetric function. Closed form so- 
lutions to (6) corresponding to parabolic e(p), c = 0  
or oo and not considering initial conditions which 
determine position of the effective surface, were dis- 
cussed for the case of semi-infinite matter in [1, 8-10]. 
The apparent asymmetry of such a solution in [-10] 
which seemingly contradicts our conclusion was en- 
tirely due to the absence there of formal definition 
of the surface and the related ambiguity in definition 
of the point x=0 .  The noted weak dependence of 
y(x)  on specific forms of e(p) cannot be explained as 
trivial consequence of the fact that all Skyrme forces 
are so fitted that they reproduce approximately the 
same functional dependence on p. That it was not so 
was seen in many calculations. Instructive is the 
following example of the energy density 

e ( p ) = f p P - g p q + b ~ ,  ( p > q ; f g > O ) .  (30) 

The corresponding 

~(y) = 1 + (qyP - p y q ) / ( p  - q) 

and 

d e (y)/d y = p q (yl, _ yq)/((p _ q) y), 

do not depend on coefficients f and g in (30). So, the 
distribution function y(x)  is also independent on 
these quantities, according to (16). The coefficients in 

(26, 30) appear only in scale transformation factor 
(14) and in (17). Also the effect of even significant 
variations of p and q is rather small. Noticeable 
asymmetry of d y / d x  arises only for unrealistically 
small values of q<0.5 in the negative (attraction) 
term in (30). 
Some quantitative characteristics related to shape of 
y(x)  are shown in Table 1. Shape of the density 
distribution in the edge region is characterized in a 
compact form by integral 

- ~ - o 0  

,~= ~ xdx(ay/dx) (31) 
- - o o  

and 

A x = (x 2 -22 )  1/2, (32) 

where 

m 

x 2 = ~ x 2 d x ( d y / d x ) .  

Quantity 2 represents the above mentioned asym- 
metry and Ax determines the width of the transition 
region. Derived with various effective forces, these 
quantities are shown in first two lines in Table 1. 
They are to be multiplied by scale factor (19) in 
order to obtain them in the usual dimension. The 
third line presents surface energy integrals (21) and 
in the next line are shown the surface energy con- 
stants (20) obtained with the values of ~ presently 
attached to each effective force. The values of b s are 
widely spread, which is believed to be due to ab- 
sence of proper definition of the surface energy in 
the original papers where B-parameter was defined. 
So, the next line presents values of fl which, for each 
version of 8(p), would provide correct surface energy 
parameter bs= 19 MeV. 
The results of this section allow for another inde- 
pendent determination of fi based on consideration 
of the density distribution. Indeed, as it can be seen 
in Fig. 1, the maximal slope of y(x)  equals 0.65-0.75 
and varies little depending on the form of e(p). The 

Table 1. Integrals (31, 32, 21) for different versions of Skyrme forces, EHP is for e(p) of [14] and 
Par is for parabolic e(y), see (24). Other lines are explained in the text 

SI ;  SIII;  EHP SII;  SIV SV Sko Sk-M; Par 

2 0.24 -0 .26  0.26 -0 .28  0.28 -0 .29  0 .31-0 .33 0.36 -0 .37  
Ax 0.54 -0 .52  0.56 -0 .54  0.57 -0 .56  0 .61-0 .59 0.65 -0 .63  
J 0.65 -0 .61 0.63 -0 .60  0 .61-0 .59 0.59 -0 .56  0.55 -0 .53  
b s 16.5; 18; 27 22; 26 28 22 18; - 
fi~oT 65 69 72 78 89 
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slope of the density in the edge region is then, by 
means of (19), 

dp(R) ~ dy(O) 0.134).15fl_,/2 
dr a dx 

and it can be compared with the measured slope of 
the charge distribution equal to 0.454).5p.fm -1 
[11]. It gives f l=60-70 MeV: fm s. This value of fl 
would give correct surface energies with e(p) of S I- 
V forces [12, 13] and also with the energy functional 
of [14]. It differs, however, from many of the cur- 
rently recommended values. For  example, the orig- 
inal f l=40 MeV. fm 5 in S I  and 120 MeV'  fm 5 in the 
version [14] of the energy functional. 
Density distributions, calculated by means of (16), 
are compared in Fig. 2 with the ones obtained in 
detailed straightforward derivations performed in 
the frameworks of hydrodynamical and Hartree- 
Fock models. In each instance the energy functional 
was the same as in the reference quoted. The only 
free parameter in this figure was nuclear radius R in 
the scailing equation 

r = R + ax. (33) 

It was determined by fitting the maximal density 
gradient point yo=0.35 0.38 at x=0 .  It should be 
noted that with our definition of R it systematically 
accepts somewhat larger values (by 0.24).4 fro) than 
with the usual definition as one-half density point. 
Parameters fi enter through (33, 19) and they were in 
each case the same as in the original versions of 
effective forces. Because the specific forms of e(p) are 
not important all edge-density distributions obtained 
in our derivations are essentially scale transforms 
(33), (19) of a certain universal shape function y(x) such 
a shown in Fig. 1. Shallower density distribution in 
calculations with e(p) of [14] is due to unrealistically 
large value of f l= 120 MeV. fm 5 in this case. 
The agreement is particularly close in comparisons 
with semi-classical derivations [14, 15]. Somewhat 
larger differences are observed in comparisons with 
quantal Hartree-Fock calculations. This can be ex- 
pected because the Hartree-Fock densities contain 
single-particle shell effects in the nuclear volume and 
a quantal tail. Quanta/ long-range quasi-particle 
shell effects, which are due to multiple reflections in 
the potential welt [161, disappear in semi-classical 
approximations such as considered here. Semi-classi- 
cal models correspond to statistical averaging over a 
large range of single particle energies [17] and it is 
believed that shell effects can be obtained and in- 
cluded in the same way as in the shell correction 
derivations, see also in [6]. 

Fig. 2. Solid lines are the detailed calculations of edge density 
distributions for 4~ (two curves in the left side) and 2~ 
obtained with versions of a(p) indicated in the figure. Solid lines 
SI and S II are from [12] and they correspond to Hartree-Fock 
derivations. Other curves are results of classical model calcu- 
lations with energy densities SIII [15] EHP [14]. From left to 
right, R=4.2, 7.2 (4.2 for 4~ 7.1, 6.8 Fermi. The second set of 
curves is the same for calcium and lead except for a radial shift. 
The results coincide, except where they are shown with broken 
lines 

Knowing the distribution of density across the nu- 
clear surface, reasonably accurate distribution of the 
density can be constracted for entire space for any 
given shape of the nuclear surface and, considering a 
moving surface, dynamics of the density distribution 
in the region of diffused surface can be described. 
Density dynamics inside the nuclear volume, where 
the density gradient is small, can be obtained as a 
separate problem and by fitting the two quantities 
together simple description of density dynamics can 
be obtained. Of special interest is the case of small 
amplitude vibrations. 

3. Density Vibrations 

For small amplitude vibrations, the time-dependent, 
or dynamical part of the density distribution can be 
approximately represented as sum of volume and 
surface components in the form 

pd(rt)-=p~(rt)y-fibR(Ot) dy(x) (34) 
adx 

Here, y(x) is the shape function of Sect. 2 with the 
scale transformation (33), see also in [2]. The two 
items in (34) represent, correspondingly, the volume 
and surface dynamics. Note, that the surface term 
does not appear in the current density i(rt) which is 
described by usual equations of volume dynamics. 
However, rot i is proportional to dy/dx and is there- 
fore, essentially a surface effect. For  small distortions 
of spherical surface 

bR(Ot)=R, , ( t )  Yzo(O). (351 
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Volume distortions of the density are described by 
wave equations of the lst-sound or Landau-Silin 
kinetic equation (0th-sound), and for given multipo- 
larity l 

pv(rt) = ~at(t) jl(kr ) Ylo(0). (36) 

Here, at(t ) is the amplitude of volume vibrations and 
Jt is spherical Bessel function [2, 4]. Relationships of 
this kind are valid for vibrations of the compression 
type (first-sound) as well as for semi-classical density 
vibrations in a quantal gas of interacting quasi-par- 
ticles (zero-sound). The difference is only in values of 
wave number k which are to be found from certain 
boundary conditions for the volume problem and 
characteristic of each instance. The boundary con- 
ditions couple volume dynamics to movement of the 
surface and the result is that amplitude at(t ) and ch(t ) 
are proportional to each other, 

1 , 
cq(t) =~-~ j l(kR) al(t), (37) 

where primes mark derivatives taken with respect to 
the argument. By means of (37) the radial depen- 
dence in (34) can be factorized as 

pa (r) = Jz (k r) y (x) - (fig (kR)/k a)(d y (x)/d x) (38) 

where r and x are related through (33) and a is the 
scale factor (19). The boundary conditions are ob- 
tained from original equations assuming, particular- 
ly, the feature of large-gradient density at the surface 
[1, 2, 4, 5]. 
The volume dynamics is determined from one or 
another nuclear models. Among such the following 
two are believed to be of prime interest. So, it can 
be assumed that the local equilibration property per- 
tains to collective density vibrations. (The first-sound 
model). Another possibility is the model of corre- 
lated oscillations of Fermi quasi-particles, which 
finds its theoretical foundation in Landau's theory of 
dense Fermi-liquid matter. In the semi-classical ap- 
proximation the relevant equation for volume dy- 
namics is the Landau's zero-sound equation for qua- 
si-particle distribution function, see, e.g. [4]. Below 
in this section results are presented corresponding to 
these two different approaches. 

3.A. First-Sound Volume Vibrations 

The dynamical density for hydrodynamical droplet 
vibrations treated in approximation of effective 
dynamical surface was described in [2]. Here we 
present the results using more appropriate edge dis- 
tribution functions of Sect. 2. The wave number k in 

(34, 38) is determined by characteristic equation for 
first-sound volume vibrations coupled to dynamical 
surface, 

1 
j'~(kR)--(A 1/3 K / 3 ( I -  1)(l +2) bs) j,(kR), 

kR  
(39) 

where K is the incompressibility modulus and b s is 
the surface energy constant (20), see [2] and also 
1218]. 
in the left portion of Fig. 3 the distributions pd(r) 
derived according to (38, 39) (shown by broken lines) 
are compared with the corresponding detailed hy- 
drodynamical calculations for 2~ [14, 19] and for 
A=I,000 [14]. The curves for / = 2  are for con- 
venience normalized to unity in the maxima. In our 
calculations the same g(p) and parameters fi were 
used as in the referred detailed theories. Values of 
kR determined as roots of (39) are practically inde- 
pendent on specific value of the coefficient in r.h.s. 
of (39) as long as it remains large, which is the case. 
Combined with weak dependence of y(x) on specific 
choice of e(p), a conclusion can be drawn that pd(r) 
is determined mainly by parameters R and /7 on 
which it depends in a simple scale-transform man- 
ner. Data presented in this portion of Fig. 3 cor- 

/ / /  '~ - ~ - T  / /'~ 

y - l /  o I ~ "  ~ ~ _ L " " ~  \ . o 

I- ~:o \ \ \  Sk-M~ :oo\~ \ o 
I \ \  :~  \ ~ , f  : 
I " , ' ,  ~ / L  - " 8  t L :' 

o, .; 

4 1 f I I I 

0 ,5 I0 film] /5 
Fig. 3. Dynamic densities obtained in the present paper are in- 
dicated by broken and dotted lines wherever they differ from 
results of detailed calculations shown with solid Iincs. On the left, 
results of Sect. 3A are compared with hydrodynamical derivations 
using ~(p) and fl of EHP-model [14] and Sk-M [19]. Right figure 
presents comparisons of results of Sect. 3B with the RPA model 
of [20]. In the Fig. a, b and c correspond to first, second and 
third roots (resonances) of characteristic equations (39) and (40). 
Dotted lines correspond to exact solutions to (16), broken lines 
are obtained with asymptotic y(x), Eq. (25) 
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respond to R=7 .3  fm which was found from the 
condition that the total number  of particles should 
equal 208 and it differs insignificantly from the same 
quantity determined for the static density distri- 
butions in [14, 19]. For  A=I ,000 ,  R=12 .8 fm.  
Curves a, b and r correspond to the first, second and 
third roots of (39) which equal, approximately: 3.12, 
6.27, 9.42 for l=0 ,  0.512, 5.79 for /=2 .  Very close 
results were obtained with asymptotic solution (24) 
corresponding to parabolic e(p) according to (25). 
The agreement between distributions pd(r) calculated 
in approximation of effective dynamic surface and 
boundary conditions and the ones obtained in de- 
tailed theories is rather close. Some difference is, 
however, noticed in comparison with the lead data 
of [14] for /=2(b)  and l = 0  in the volume region 
which, apparently, is due to somewhat different ra- 
dial dependences of the volume components. The 
wave number k determined in our calculations from 
characteristic equation (39) is, indeed, by 25-30% 
larger than effective value of k found in [14] for this 
case. On the other hand, no such discrepancy was 
seen in comparisons with Sk-M calculations for lead 
[19] and also in the data for A=I ,000 .  On this 
ground it can be concluded that with the apparently 
too large f l= 120 M e V '  fm 5 used in [14] the width 
of the diffused surface of the density is so large that 
it may inhance some inaccuracy of our approxima- 
tion. Much closer agreement was, indeed, obtained 
with HEP-calculations using smaller, and more re- 
alistic values of ft. 

3.B. Zero-Sound Volume Vibrations 

Collective density vibrations can also arise in a gas 
of correlated quasi-particles. In the approximation of 
zero-sound-plus-surface, the characteristic equation 
which determines eigen-values for the wave number 
k reads 

1 
kR j'~(kR) 

= (3A 1/3 ev/( 1 _ 1)(l + 2) bs) ((1 - 3 s 2 + G(s))j'~'(kR) 

+ (1 - s  2 + �89 o + G(s))) jl(kR)), (40) 

where e~ is the Fermi-energy. Parameter  s 
=v(~ 1 is the ratio of zero-sound velocity to 
velocity of quasi-particles and it is found from alge- 
braic equation, 

)'  G(s)=Fo+s2fl(l+�89 -1=  In s + l  - 1  (41) 
s - 1  

Here, F 0 and F 1 are Landau's  amplitudes of quasi- 
particle interaction in nuclear volume. Values of k 

obtained through (40, 41) lead to frequencies of eigen- 
modes which are in good agreement with the energies 
of scalar mode giant resonances 1-4] and so are the 
other characteristics of importance. 
As an analogue to our derivations referred here as a 
zero-sound vibrations coupled to dynamic surface 
one can consider the traditional approximation of 
chaotic phases. So, in the right portion of Fig. 3 the 
dynamical density pd(r) calculated by means of (38, 
40) is compared with the same quantity for lead for 
the first l = 2  and l = 0  resonance determined by 
RPA theory in which Har t ree-Fock basis states and 
interaction S I was used [20]. Here, radius R = 6.8 fm 
and f i=64  M e V . f m  5. Roots of the characteristic 
equation (40) are: kR=2.28,  5.95 for l = 0  and 1.38, 
5.28 for l = 2  for curves marked as a and b in the 
figure. Agreement with the detailed theory is, again, 
rather close. 
The shapes of radial distribution functions shown in 
Fig. 3 support classification of nuclear vibrations as 
surface mode (a) volume mode (b, c, ...) resonances. 
For the volume type of vibrations the characteristic 
values of kR are close to roots of spherical Bessel 
functions. For the quadrupole type hydrodynamical  
surface vibrations kR4~l whereas for zero-sound- 
plus-surface mode k R =  1.2-1.4. Other important  fea- 
tures of resonances are represented by the so-called 
model-less sum rules and response functions. These 
quantities are dealt with in a separate publication 
[21]. 

4. Conclusions 

It has been shown that close descriptions of static 
and dynamical densities in heavy nuclei can be ob- 
tained in a simple approximation dealing with vol- 
ume quantities coupled to diffused surface by means 
of boundary conditions set an a certains effective 
sharp surface. 

Authors express their gratitude to I.Yu. Tzechmistrenko who per- 
formed some hydrodynamical calculations. All other results re- 
ported in this paper were obtained by means of TI-59 pocket 
calculator. 
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